Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aq...Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs.展开更多
A process was proposed to convert and separate selenium and arsenic in copper anode slime(CAS) by low-temperature alkali fusion process.Central composite design was employed to optimize the effective parameters,in whi...A process was proposed to convert and separate selenium and arsenic in copper anode slime(CAS) by low-temperature alkali fusion process.Central composite design was employed to optimize the effective parameters,in which Na OH/CAS mass ratio,fusion temperature and fusion time were selected as variables,and the conversion ratio of selenium and arsenic as responses.Second-order polynomial models of high significance and 3D response surface plots were constructed to show the relationship between the responses and the variables.Optimum area of >90% selenium conversion ratio and >90% arsenic conversion ratio was obtained by the overlaid contours at Na OH/CAS mass ratio of 0.65-0.75,fusion temperature of 803-823 K and fusion time of 20-30 min.The models are validated by experiments in the optimum area,and the results demonstrate that these models are reliable and accurate in predicting the fusion process.展开更多
Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating ...Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating process,a new multi-layer low-temperature heating method(MLHM)was proposed.Considering input heat flux,the thermal capacity and thermal resistance of asphalt mixture,the heat transfer model was established based on energy conservation law.By heating the asphalt mixture in layers,it changes the situation that the heat energy can only be input from the upper surface of the asphalt mixture pavement.Through the simulation of the heating method of asphalt mixture in the existing technology,the result shows that the existing heating methods lead to serious aging or charring of the asphalt mixture.By MLHM,the upper and the bottom of the asphalt mixture are heated at the same time,and the heating temperature is lower than other heat methods,which not only reduces the heating thickness and increases the heating area of the asphalt mixture pavement,but also improves the heating speed,saves the energy resource and ensures the heating quality.Especially,by MLHM,the heating uniformity is better and speed is faster.展开更多
Three varieties were employed as materials to study changes of photosynthetic traits under low-temperature stress. The results showed that Pn, Gs and Tr decreased under low-temperature treatment. Ci decreased under lo...Three varieties were employed as materials to study changes of photosynthetic traits under low-temperature stress. The results showed that Pn, Gs and Tr decreased under low-temperature treatment. Ci decreased under low-temperature treatment 18℃/ 9℃, and 16℃/7℃, and it decreased in earlier stage after increased under 14℃/5℃. WUE was increased in earlier stage and after stabilized. The order of the three varieties of cold resistance were Jinyu 5〉Xingken 3〉Jidan 198. They could make self-regulation through adjusting Gs, Tr, Ci and WUE.展开更多
The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and mi...The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900℃, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of er24.5, Q×f =24 622 GHz, rf=4.2×10-6℃ -1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900℃ for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.展开更多
A novel low-temperature alkaline smelting process is proposed to convert and separate amphoteric metals in crushed metal enrichment originated from waste printed circuit boards. The central composite design was used t...A novel low-temperature alkaline smelting process is proposed to convert and separate amphoteric metals in crushed metal enrichment originated from waste printed circuit boards. The central composite design was used to optimize the operating parameters,in which mass ratio of Na OH-to-CME, smelting temperature and smelting time were chosen as the variables, and the conversions of amphoteric metals tin, lead, aluminum and zinc were response parameters. Second-order polynomial models of high significance and3 D response surface plots were constructed to show the relationship between the responses and the variables. Optimum area of80%-85% Pb conversion and over 95% Sn conversion was obtained by the overlaid contours at mass ratio of Na OH-to-CME of4.5-5.0, smelting temperature of 653-723 K, smelting time of 90-120 min. The models were validated experimentally in the optimum area, and the results demonstrate that these models are reliable and accurate in predicting the smelting process.展开更多
The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of ...The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively.展开更多
Differential thermal analysis was utilized to determine midwinter hardiness of stem tissues and flower buds of mei flower (Prunus mume) and David’s peach (Prunus davidiana). Low temperature freezing exotherms were fo...Differential thermal analysis was utilized to determine midwinter hardiness of stem tissues and flower buds of mei flower (Prunus mume) and David’s peach (Prunus davidiana). Low temperature freezing exotherms were found to occur at -35℃ in Green Calyxs’ David’s peach and -18℃ in mei flower. A Low temperature exotherm was produced by the freezing of deep supercooling water which was detected in the wood tissues but not in the bark. Freezing processes of the wood and those of the bark appeared to be independent. Deep supercooling points of both species were found to be closely related to freezing injury and to their respective distributions.展开更多
Studies on the cold-responsive genes and cold signaling of woody species drop far behind in comparison to herbaceous plants.Due to similar lignified structure,perennial characteristic,and enhanced tolerance,it seems m...Studies on the cold-responsive genes and cold signaling of woody species drop far behind in comparison to herbaceous plants.Due to similar lignified structure,perennial characteristic,and enhanced tolerance,it seems much easier to find strongly antifreeze genes and obtain effective results in transgenic woody plants.In this study,Ammopiptanthus mongolicus,an evergreen,broadleaf and cold-resist leguminous shrub growing in the desert of Inner Mongolia,was used as a material for low-temperature induced gene isolation.Through differential expression analysis induced by low-temperature,thirteen up-regulated cDNAs were identified.One of them,AmEBP1,(accession number:DQ519359)confers enhanced cold-tolerance to both transgenic E.coli and transgenic Arabidopsis.Results suggest that AmEBP1 can stimulate the synthesis of ribosome and the dephosphyration of the α-subunit of initiation factor 2(eIF2α),and subsequently promote the translation process.By which the transgenic plants obtained increased cold-resistant ability.展开更多
The feldspar-based microwave dielectric ceramic with low relative permittivity(εr)and excellent mechanical properties has attracted much attention in the fifth-generation wireless communication technology.In this wor...The feldspar-based microwave dielectric ceramic with low relative permittivity(εr)and excellent mechanical properties has attracted much attention in the fifth-generation wireless communication technology.In this work,a series of microwave dielectric ceramic SrAl_(2-x)Ga_(x)Si_(2)O_(8)(0.1≤x≤2.0)was synthesized using the traditional solid-state method.X-ray diffraction pattern indicates that Ga^(3+)can be dissolved into Al^(3+),forming a solid solution.Meanwhile,substitution of Ga^(3+)for Al^(3+)can promote the space group transition from I2/c(0.1≤x≤1.4)to P21/a(1.6≤x≤2.0)with coefficient of thermal expansion(CTE)increasing from 2.9×10^(-6)℃^(-1) to 5.2×10^(-6)℃^(-1).During this substitution,the phase transition can significantly improve the structural symmetry to enhance the dielectric properties and mechanical properties.Rietveld refinement results indicate that Ga^(3+)averagely occupied four Al^(3+)compositions to form solid solution.All ceramics have a dense microstructure and high relative density above 95%.An ultralower of 5.8 was obtained at x=1.6 composition with high quality factor(Q´f)of 50700 GHz and negative temperature coefficients of resonant frequency(tf)of approximately−35×10^(-6)℃^(-1).The densification temperature can be reduced to 940℃by adding 4%(in mass)LiF,resulting in good chemical compatibility with Ag electrode.Meanwhile,negativetf can be tuned to near-zero(+3.7×10^(-6)℃^(-1))by adding CaTiO_(3) ceramic.展开更多
ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(...ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(2)-Nb_(2)O_(5)(CTN)ternary composite oxide additives with different composition ratios on sintering behavior and properties of ZnAl_(2)O_(4) microwave dielectric ceramics was investigated.When the molar fraction ranges of Cu,Ti and Nb elements in 5%CTN additives are 0.625-0.875,0-0.250 and 0.125-0.625,respectively,sintering temperature of ZnAl_(2)O_(4) ceramics can be reduced from above 1400℃to below 1000℃.The sintering additives CN(Cu:Nb=1:1,molar ratio)and CTN(Cu:Ti:Nb=4:1:3,molar ratio)can reduce sintering temperature of ZnAl_(2)O_(4) ceramics to 975 and 1000℃,respectively,while maintaining good dielectric properties(dielectric constantε_(r)=11.36,quality factor Q׃=8245 GHz andε_(r)=9.52,Q׃=22249 GHz)and flexural strengths(200 and 161 MPa),which are expected to be applied in preparation of low temperature co-fired ceramic(LTCC)materials with copper electrodes.Low-temperature sintering of the ZnAl_(2)O_(4)+CTN system is characterized as activated sintering.Nanometer-level amorphous interfacial films containing Cu,Ti,and Nb elements are observed at the grain boundaries,which may provide fast diffusion pathways for mass transportation during the sintering process.Valence changes of Ti and Cu ions,along with changes of oxygen vacancies,are confirmed,which provides a potential mechanism for reduced sintering temperature of ZnAl_(2)O_(4) ceramics.In addition,a series of reactions occurring at the grain boundaries can activate these boundaries and further promote the sintering densification process.These results suggest a promising way to design a novel LTCC material with excellent properties based on the low temperature sintering of ceramics with the sintering aid of CuO-TiO_(2)-Nb_(2)O_(5) composite oxide.展开更多
A relationship is established, using the least squares method, between the standard enthalpy of formation and the standard enthalpy of formation divided by the exothermic denitration decomposition peak absolute temper...A relationship is established, using the least squares method, between the standard enthalpy of formation and the standard enthalpy of formation divided by the exothermic denitration decomposition peak absolute temperature corresponding to β →0.展开更多
For solving the dilemma of the short exothermic life-span of WO_(3)based metastable interstitial composites(MICs)with extensive application prospect,this paper has firstly designed the promising antiwetting Al/WO_(3)M...For solving the dilemma of the short exothermic life-span of WO_(3)based metastable interstitial composites(MICs)with extensive application prospect,this paper has firstly designed the promising antiwetting Al/WO_(3)MICs via electrophoresis assembly of nano-Al and WO_(3)particles fabricated by hydrothermal synthesis method,followed by the subsequent fluorination treatment.A combination of X ray diffraction(XRD),field emission scanning electron microscope(FESEM),energy dispersive X-ray spectroscopy(EDX),and Fourier transform infrared spectroscopy(FT-IR)techniques were utilized in order to characterize the crystal structure,microstructure,and elemental composition distribution of target films after different natural exposure tests.The product with uniform distribution and high purity possesses a high contact angle of~170°and a minute sliding angle of~1°,and displays the outstanding anti-wetting property using droplets with different surface tensions.It also shows great moisture stability in high relative-humidity circumstances after one year of the natural exposure experiment.Notably,the heat output of a fresh sample can reach up to 2.3 kJ/g and retain 96%after the whole exposure test,showing outstanding thermo-stability for at least one year.This work further proposed the mechanism of antiwetting Al/WO_(3)MICs considering the variation tendency of their DSC curve,providing a valuable theoretical reference for designing other self-protected MICs with a long exothermic life-span applied in wide fields of national defense,military industry,etc.展开更多
MXene,a new type of two-dimensional materials,have been demonstrated as one of the best photothermal materials owing to their strong light-matter interaction and high photothermal conversion efficiency in recent years...MXene,a new type of two-dimensional materials,have been demonstrated as one of the best photothermal materials owing to their strong light-matter interaction and high photothermal conversion efficiency in recent years.Herein,we report the intriguing light-to-heat conversion property of vanadium carbide(V_(2)C)MXene under irradiation of millisecond laser pulse.Unlike the typical photothermal materials,the V_(2)C MXene not only converts the incident laser energy to heat by the physical photothermal effect,but also triggers the exothermic oxidation of the V_(2)C MXene.The oxidation could be greatly promoted with addition of plasmonic Au nanorods(Au NRs)for light absorption enhancement.Owing to the unique light-to-heat conversion property,the Au NRs/V_(2)C MXene membrane could serve as high temperature pulse(HTP)generators that is proposed for numerous applications with high demand for immediacy.As a proof-of concept application,Au NRs/V_(2)C MXene membrane was applied for laser ignition of the high energy density materials,such as 2,4,6,8,10,12-(hexanitrohexaaza)cyclododecane(HNIW or CL-20).An improved ignition performance,in terms of lowered laser threshold,is achieved as compared to the state-of-the-art light-to-heat conversion materials.展开更多
基金partially supported by the National Natural Science Foundation of China(22479022)Liaoning Revitalization Talents Program(XLYC2007129)。
文摘Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs.
基金Project(51234009)supported by the National Natural Science Foundation of ChinaProject(2014DFA90520)supported by International Cooperation Program of Ministry of Science of ChinaProject(2013A100003)supported by the Production,Teaching and Research Program of Guangdong Province,China
文摘A process was proposed to convert and separate selenium and arsenic in copper anode slime(CAS) by low-temperature alkali fusion process.Central composite design was employed to optimize the effective parameters,in which Na OH/CAS mass ratio,fusion temperature and fusion time were selected as variables,and the conversion ratio of selenium and arsenic as responses.Second-order polynomial models of high significance and 3D response surface plots were constructed to show the relationship between the responses and the variables.Optimum area of >90% selenium conversion ratio and >90% arsenic conversion ratio was obtained by the overlaid contours at Na OH/CAS mass ratio of 0.65-0.75,fusion temperature of 803-823 K and fusion time of 20-30 min.The models are validated by experiments in the optimum area,and the results demonstrate that these models are reliable and accurate in predicting the fusion process.
基金Project(2017JM5077)supported by the Natural Science Basic Research Plan in Shaanxi Province,ChinaProjects(300102259109,300102259306)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating process,a new multi-layer low-temperature heating method(MLHM)was proposed.Considering input heat flux,the thermal capacity and thermal resistance of asphalt mixture,the heat transfer model was established based on energy conservation law.By heating the asphalt mixture in layers,it changes the situation that the heat energy can only be input from the upper surface of the asphalt mixture pavement.Through the simulation of the heating method of asphalt mixture in the existing technology,the result shows that the existing heating methods lead to serious aging or charring of the asphalt mixture.By MLHM,the upper and the bottom of the asphalt mixture are heated at the same time,and the heating temperature is lower than other heat methods,which not only reduces the heating thickness and increases the heating area of the asphalt mixture pavement,but also improves the heating speed,saves the energy resource and ensures the heating quality.Especially,by MLHM,the heating uniformity is better and speed is faster.
基金Supported by the Science and Technology Foundation(2008BADB3B09-03)
文摘Three varieties were employed as materials to study changes of photosynthetic traits under low-temperature stress. The results showed that Pn, Gs and Tr decreased under low-temperature treatment. Ci decreased under low-temperature treatment 18℃/ 9℃, and 16℃/7℃, and it decreased in earlier stage after increased under 14℃/5℃. WUE was increased in earlier stage and after stabilized. The order of the three varieties of cold resistance were Jinyu 5〉Xingken 3〉Jidan 198. They could make self-regulation through adjusting Gs, Tr, Ci and WUE.
基金Project(2010GXNSFA013029) supported by the Natural Science Foundation of Guangxi Province,ChinaProject(101059529) supported by National Undergraduate Innovation Program of the Ministry of Education of China
文摘The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900℃, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of er24.5, Q×f =24 622 GHz, rf=4.2×10-6℃ -1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900℃ for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.
基金Projects(51074190,51234009)supported by the National Natural Science Foundation of ChinaProject(2014DFA90520)supported by International Cooperation Program of Ministry of Science of ChinaProject(20110162110049)supported by the Doctoral Scientific Fund Project of the Ministry of Education of China
文摘A novel low-temperature alkaline smelting process is proposed to convert and separate amphoteric metals in crushed metal enrichment originated from waste printed circuit boards. The central composite design was used to optimize the operating parameters,in which mass ratio of Na OH-to-CME, smelting temperature and smelting time were chosen as the variables, and the conversions of amphoteric metals tin, lead, aluminum and zinc were response parameters. Second-order polynomial models of high significance and3 D response surface plots were constructed to show the relationship between the responses and the variables. Optimum area of80%-85% Pb conversion and over 95% Sn conversion was obtained by the overlaid contours at mass ratio of Na OH-to-CME of4.5-5.0, smelting temperature of 653-723 K, smelting time of 90-120 min. The models were validated experimentally in the optimum area, and the results demonstrate that these models are reliable and accurate in predicting the smelting process.
基金Project(2008A09030004) supported by the Major Science and Technology Project of Guangdong Province,ChinaProject(30815009) supported by the Foundation of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body
文摘The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively.
基金This project was supported by the National Natural Science Foundation of China
文摘Differential thermal analysis was utilized to determine midwinter hardiness of stem tissues and flower buds of mei flower (Prunus mume) and David’s peach (Prunus davidiana). Low temperature freezing exotherms were found to occur at -35℃ in Green Calyxs’ David’s peach and -18℃ in mei flower. A Low temperature exotherm was produced by the freezing of deep supercooling water which was detected in the wood tissues but not in the bark. Freezing processes of the wood and those of the bark appeared to be independent. Deep supercooling points of both species were found to be closely related to freezing injury and to their respective distributions.
文摘Studies on the cold-responsive genes and cold signaling of woody species drop far behind in comparison to herbaceous plants.Due to similar lignified structure,perennial characteristic,and enhanced tolerance,it seems much easier to find strongly antifreeze genes and obtain effective results in transgenic woody plants.In this study,Ammopiptanthus mongolicus,an evergreen,broadleaf and cold-resist leguminous shrub growing in the desert of Inner Mongolia,was used as a material for low-temperature induced gene isolation.Through differential expression analysis induced by low-temperature,thirteen up-regulated cDNAs were identified.One of them,AmEBP1,(accession number:DQ519359)confers enhanced cold-tolerance to both transgenic E.coli and transgenic Arabidopsis.Results suggest that AmEBP1 can stimulate the synthesis of ribosome and the dephosphyration of the α-subunit of initiation factor 2(eIF2α),and subsequently promote the translation process.By which the transgenic plants obtained increased cold-resistant ability.
基金National Natural Science Foundation of China (52302140)Major Scientific and Technological Innovation Project of Wenzhou (ZG2023040, ZG2023042)Joint Funds of the National Natural Science Foundation of China Key Program (U21B2068)。
文摘The feldspar-based microwave dielectric ceramic with low relative permittivity(εr)and excellent mechanical properties has attracted much attention in the fifth-generation wireless communication technology.In this work,a series of microwave dielectric ceramic SrAl_(2-x)Ga_(x)Si_(2)O_(8)(0.1≤x≤2.0)was synthesized using the traditional solid-state method.X-ray diffraction pattern indicates that Ga^(3+)can be dissolved into Al^(3+),forming a solid solution.Meanwhile,substitution of Ga^(3+)for Al^(3+)can promote the space group transition from I2/c(0.1≤x≤1.4)to P21/a(1.6≤x≤2.0)with coefficient of thermal expansion(CTE)increasing from 2.9×10^(-6)℃^(-1) to 5.2×10^(-6)℃^(-1).During this substitution,the phase transition can significantly improve the structural symmetry to enhance the dielectric properties and mechanical properties.Rietveld refinement results indicate that Ga^(3+)averagely occupied four Al^(3+)compositions to form solid solution.All ceramics have a dense microstructure and high relative density above 95%.An ultralower of 5.8 was obtained at x=1.6 composition with high quality factor(Q´f)of 50700 GHz and negative temperature coefficients of resonant frequency(tf)of approximately−35×10^(-6)℃^(-1).The densification temperature can be reduced to 940℃by adding 4%(in mass)LiF,resulting in good chemical compatibility with Ag electrode.Meanwhile,negativetf can be tuned to near-zero(+3.7×10^(-6)℃^(-1))by adding CaTiO_(3) ceramic.
基金National Natural Science Foundation of China (U24A2052)Shanghai Eastern Talent Plan。
文摘ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(2)-Nb_(2)O_(5)(CTN)ternary composite oxide additives with different composition ratios on sintering behavior and properties of ZnAl_(2)O_(4) microwave dielectric ceramics was investigated.When the molar fraction ranges of Cu,Ti and Nb elements in 5%CTN additives are 0.625-0.875,0-0.250 and 0.125-0.625,respectively,sintering temperature of ZnAl_(2)O_(4) ceramics can be reduced from above 1400℃to below 1000℃.The sintering additives CN(Cu:Nb=1:1,molar ratio)and CTN(Cu:Ti:Nb=4:1:3,molar ratio)can reduce sintering temperature of ZnAl_(2)O_(4) ceramics to 975 and 1000℃,respectively,while maintaining good dielectric properties(dielectric constantε_(r)=11.36,quality factor Q׃=8245 GHz andε_(r)=9.52,Q׃=22249 GHz)and flexural strengths(200 and 161 MPa),which are expected to be applied in preparation of low temperature co-fired ceramic(LTCC)materials with copper electrodes.Low-temperature sintering of the ZnAl_(2)O_(4)+CTN system is characterized as activated sintering.Nanometer-level amorphous interfacial films containing Cu,Ti,and Nb elements are observed at the grain boundaries,which may provide fast diffusion pathways for mass transportation during the sintering process.Valence changes of Ti and Cu ions,along with changes of oxygen vacancies,are confirmed,which provides a potential mechanism for reduced sintering temperature of ZnAl_(2)O_(4) ceramics.In addition,a series of reactions occurring at the grain boundaries can activate these boundaries and further promote the sintering densification process.These results suggest a promising way to design a novel LTCC material with excellent properties based on the low temperature sintering of ceramics with the sintering aid of CuO-TiO_(2)-Nb_(2)O_(5) composite oxide.
文摘A relationship is established, using the least squares method, between the standard enthalpy of formation and the standard enthalpy of formation divided by the exothermic denitration decomposition peak absolute temperature corresponding to β →0.
基金funded by the financial support from National Natural Science Foundation of China(Grant No 21805014 and No82102635)Science and Technology Research Project of Chongqing Education Board(Grant No.KJQN201901428)。
文摘For solving the dilemma of the short exothermic life-span of WO_(3)based metastable interstitial composites(MICs)with extensive application prospect,this paper has firstly designed the promising antiwetting Al/WO_(3)MICs via electrophoresis assembly of nano-Al and WO_(3)particles fabricated by hydrothermal synthesis method,followed by the subsequent fluorination treatment.A combination of X ray diffraction(XRD),field emission scanning electron microscope(FESEM),energy dispersive X-ray spectroscopy(EDX),and Fourier transform infrared spectroscopy(FT-IR)techniques were utilized in order to characterize the crystal structure,microstructure,and elemental composition distribution of target films after different natural exposure tests.The product with uniform distribution and high purity possesses a high contact angle of~170°and a minute sliding angle of~1°,and displays the outstanding anti-wetting property using droplets with different surface tensions.It also shows great moisture stability in high relative-humidity circumstances after one year of the natural exposure experiment.Notably,the heat output of a fresh sample can reach up to 2.3 kJ/g and retain 96%after the whole exposure test,showing outstanding thermo-stability for at least one year.This work further proposed the mechanism of antiwetting Al/WO_(3)MICs considering the variation tendency of their DSC curve,providing a valuable theoretical reference for designing other self-protected MICs with a long exothermic life-span applied in wide fields of national defense,military industry,etc.
基金the National Natural Science Foundation of China (21703217, 11702264, 11702268, 11802276, 11772307) for financial support
文摘MXene,a new type of two-dimensional materials,have been demonstrated as one of the best photothermal materials owing to their strong light-matter interaction and high photothermal conversion efficiency in recent years.Herein,we report the intriguing light-to-heat conversion property of vanadium carbide(V_(2)C)MXene under irradiation of millisecond laser pulse.Unlike the typical photothermal materials,the V_(2)C MXene not only converts the incident laser energy to heat by the physical photothermal effect,but also triggers the exothermic oxidation of the V_(2)C MXene.The oxidation could be greatly promoted with addition of plasmonic Au nanorods(Au NRs)for light absorption enhancement.Owing to the unique light-to-heat conversion property,the Au NRs/V_(2)C MXene membrane could serve as high temperature pulse(HTP)generators that is proposed for numerous applications with high demand for immediacy.As a proof-of concept application,Au NRs/V_(2)C MXene membrane was applied for laser ignition of the high energy density materials,such as 2,4,6,8,10,12-(hexanitrohexaaza)cyclododecane(HNIW or CL-20).An improved ignition performance,in terms of lowered laser threshold,is achieved as compared to the state-of-the-art light-to-heat conversion materials.