期刊文献+
共找到4,576篇文章
< 1 2 229 >
每页显示 20 50 100
Object detection in crowded scenes via joint prediction 被引量:3
1
作者 Hong-hui Xu Xin-qing Wang +2 位作者 Dong Wang Bao-guo Duan Ting Rui 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第3期103-115,共13页
Detecting highly-overlapped objects in crowded scenes remains a challenging problem,especially for one-stage detector.In this paper,we extricate YOLOv4 from the dilemma in a crowd by fine-tuning its detection scheme,n... Detecting highly-overlapped objects in crowded scenes remains a challenging problem,especially for one-stage detector.In this paper,we extricate YOLOv4 from the dilemma in a crowd by fine-tuning its detection scheme,named YOLO-CS.Specifically,we give YOLOv4 the power to detect multiple objects in one cell.Center to our method is the carefully designed joint prediction scheme,which is executed through an assignment of bounding boxes and a joint loss.Equipped with the derived joint-object augmentation(DJA),refined regression loss(RL)and Score-NMS(SN),YOLO-CS achieves competitive detection performance on CrowdHuman and CityPersons benchmarks compared with state-of-the-art detectors at the cost of little time.Furthermore,on the widely used general benchmark COCO,YOLOCS still has a good performance,indicating its robustness to various scenes. 展开更多
关键词 tuning PREDICTION scene
在线阅读 下载PDF
Towards complex scenes: A deep learning-based camouflaged people detection method for snapshot multispectral images 被引量:2
2
作者 Shu Wang Dawei Zeng +3 位作者 Yixuan Xu Gonghan Yang Feng Huang Liqiong Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期269-281,共13页
Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems,... Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield. 展开更多
关键词 Camouflaged people detection Snapshot multispectral imaging Optimal band selection MS-YOLO Complex remote sensing scenes
在线阅读 下载PDF
Low-Light Image Enhancement Model Based on Retinex Theory
3
作者 SHANG Cheng SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第5期14-20,57,共8页
Low-light image enhancement is one of the most active research areas in the field of computer vision in recent years.In the low-light image enhancement process,loss of image details and increase in noise occur inevita... Low-light image enhancement is one of the most active research areas in the field of computer vision in recent years.In the low-light image enhancement process,loss of image details and increase in noise occur inevitably,influencing the quality of enhanced images.To alleviate this problem,a low-light image enhancement model called RetinexNet model based on Retinex theory was proposed in this study.The model was composed of an image decomposition module and a brightness enhancement module.In the decomposition module,a convolutional block attention module(CBAM)was incorporated to enhance feature representation capacity of the network,focusing on crucial features and suppressing irrelevant ones.A multifeature fusion denoising module was designed within the brightness enhancement module,circumventing the issue of feature loss during downsampling.The proposed model outperforms the existing algorithms in terms of PSNR and SSIM metrics on the publicly available datasets LOL and MIT-Adobe FiveK,as well as gives superior results in terms of NIQE metrics on the publicly available dataset LIME. 展开更多
关键词 low-light image enhancement Retinex model Noise suppression Feature fusion
在线阅读 下载PDF
Introduction to Visual Surveillance of Dynamic Scenes
4
作者 Steve Maybank 《自动化学报》 EI CSCD 北大核心 2003年第3期319-320,共2页
关键词 of Introduction to Visual Surveillance of Dynamic scenes
全文增补中
基于ArcScene三维数字流域建模研究 被引量:3
5
作者 李鑫龙 杨东旭 +3 位作者 王璐 季月 林浩 吕国辉 《安徽农业科学》 CAS 2015年第22期363-365,共3页
三维数字流域是对流域周边地理环境、自然环境和生态环境等各种信息的直观显示,对流域内经济建设与资源利用有重要的辅助作用。该研究提出了一种基于Arc Scene的三维数字流域建模方法。利用航空摄影测量获得的高分辨率的DOM影像与DEM数... 三维数字流域是对流域周边地理环境、自然环境和生态环境等各种信息的直观显示,对流域内经济建设与资源利用有重要的辅助作用。该研究提出了一种基于Arc Scene的三维数字流域建模方法。利用航空摄影测量获得的高分辨率的DOM影像与DEM数据进行叠加分析,实现了数字流域的建模与多视图的三维飞行动画预览。利用该方法可以对流域内地形地貌与人文特征进行快速直观的预览与分析,为流域内水利设施、交通设施、社会公共设施的设计施工与改建的顺利进行提供重要的技术支持。 展开更多
关键词 ARC scene 激光点云 DOM DEM 流域三维建模
在线阅读 下载PDF
Fast ISAR imaging method based on scene segmentation 被引量:1
6
作者 Mingjiu Lü Shaodong Li +2 位作者 Wenfeng Chen Jun Yang Xiaoyan Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第6期1078-1088,共11页
Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reas... Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reason is that large scene reconstruction needs a higher dimension of the sensing matrix. To reduce this limitation, a fast high resolution ISAR imaging method,which is based on scene segmentation for random chirp frequencystepped signals, is proposed. The idea of scene segmentation is used to solve the problems aforementioned. In the method,firstly, the observed scene is divided into multiple sub-scenes and then the sub-scenes are reconstructed respectively. Secondly, the whole image scene can be obtained through the stitching of the sub-scenes. Due to the reduction of the dimension of the sensing matrix, the requirement of the memory storage space is reduced substantially. In addition, due to the nonlinear superposition of the reconstructed time of the segmented sub-scenes, the reconstruction time is reduced, and the purpose of fast imaging is achieved.Meanwhile, the feasibility and the related factors which affect the performance of the proposed method are also analyzed, and the selection criterion of the scene segmentation is afforded. Finally,theoretical analysis and simulation results demonstrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 compressed sensing(CS) inverse synthetic aperture radar(ISAR) imaging random chirp frequency-stepped signal scene segmentation
在线阅读 下载PDF
Autonomous landing scene recognition based on transfer learning for drones 被引量:2
7
作者 DU Hao WANG Wei +1 位作者 WANG Xuerao WANG Yuanda 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期28-35,共8页
In this paper, we study autonomous landing scene recognition with knowledge transfer for drones. Considering the difficulties in aerial remote sensing, especially that some scenes are extremely similar, or the same sc... In this paper, we study autonomous landing scene recognition with knowledge transfer for drones. Considering the difficulties in aerial remote sensing, especially that some scenes are extremely similar, or the same scene has different representations in different altitudes, we employ a deep convolutional neural network(CNN) based on knowledge transfer and fine-tuning to solve the problem. Then, LandingScenes-7 dataset is established and divided into seven classes. Moreover, there is still a novelty detection problem in the classifier, and we address this by excluding other landing scenes using the approach of thresholding in the prediction stage. We employ the transfer learning method based on ResNeXt-50 backbone with the adaptive momentum(ADAM) optimization algorithm. We also compare ResNet-50 backbone and the momentum stochastic gradient descent(SGD) optimizer. Experiment results show that ResNeXt-50 based on the ADAM optimization algorithm has better performance. With a pre-trained model and fine-tuning, it can achieve 97.845 0% top-1 accuracy on the LandingScenes-7dataset, paving the way for drones to autonomously learn landing scenes. 展开更多
关键词 landing scene recognition convolutional neural network(CNN) transfer learning remote sensing image
在线阅读 下载PDF
Scene matching based on non-linear pre-processing on referenceimage and sensed image
8
作者 ZhongSheng ZhangTianxu SangNong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期237-240,共4页
To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability... To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability is raised greatly. Especially for the low S/N image pairs, the effect is more remarkable. 展开更多
关键词 intensity-based correlation heterogeneous image scene matching
在线阅读 下载PDF
An Improved Scene-based Nonuniformity Correction Algorithm for Infrared Focal Plane Arrays Using Neural Networks 被引量:2
9
作者 隋婧 金伟其 +2 位作者 董立泉 王霞 郭宏 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第2期117-122,共6页
The improved scene-based adaptive nonuniformity correction (NUC) algorithms using a neural network (NNT) approach for infrared image sequences are presented and analyzed. The retina-like neural networks using steepest... The improved scene-based adaptive nonuniformity correction (NUC) algorithms using a neural network (NNT) approach for infrared image sequences are presented and analyzed. The retina-like neural networks using steepest descent model was the first proposed infrared focal plane arrays (IRFPA) nonuniformity compensation method,which can perform parameter estimation of the sensors over time on a frame by frame basis. To increase the strength and the robustness of the NNT algorithm and to avoid the presence of ghosting artifacts,some optimization techniques,including momentum term,regularization factor and adaptive learning rate,were executed in the parameter learning process. In this paper,the local median filtering result of AX^U_ ij (n) is proposed as an alternative value of desired network output of neuron X_ ij (n),denoted as T_ ij (n),which is the local spatial average of AX^U_ ij (n) in traditional NNT methods. Noticeably,the NUC algorithm is inter-frame adaptive in nature and does not rely on any statistical assumptions on the scene data in the image sequence. Applications of this algorithm to the simulated video sequences and real infrared data taken with PV320 show that the correction results of image sequence are better than that of using original NNT approach,especially for the short-time image sequences (several hundred frames) subjected to the dense impulse noises with a number of dead or saturated pixels. 展开更多
关键词 红外线 焦面位移排列 神经系统 图像系统 光化学
在线阅读 下载PDF
Natural Scene Classification Inspired by Visual Perception and Cognition Mechanisms
10
作者 ZHANG Rui 《重庆理工大学学报(自然科学)》 CAS 2011年第7期24-43,共20页
The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natu... The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natural scene image classification.This approach consists of one visual perception model and two visual cognition models.The visual perception model,composed of two steps,is used to extract discriminative features from natural scene images.In the first step,we mimic the oriented and bandpass properties of human primary visual cortex by a special complex wavelets transform,which can decompose a natural scene image into a series of 2D spatial structure signals.In the second step,a hybrid statistical feature extraction method is used to generate gist features from those 2D spatial structure signals.Then we design a cognitive feedback model to realize adaptive optimization for the visual perception model.At last,we build a multiple semantics based cognition model to imitate human cognitive mode in rapid natural scene categorization.Experiments on natural scene datasets show that the proposed method achieves high efficiency and accuracy for natural scene classification. 展开更多
关键词 natural scene classification visual perception model visual cognition model
在线阅读 下载PDF
Scene image recognition with knowledge transfer for drone navigation
11
作者 DU Hao WANG Wei +2 位作者 WANG Xuerao ZUO Jingqiu WANG Yuanda 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1309-1318,共10页
In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors o... In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors or from outdoors to indoors transitional scenes(TSs),and others.However,there are difficulties in how to recognize the TSs,to this end,we employ deep convolutional neural network(CNN)based on knowledge transfer,techniques for image augmentation,and fine tuning to solve the issue.Moreover,there is still a novelty detection prob-lem in the classifier,and we use global navigation satellite sys-tems(GNSS)to solve it in the prediction stage.Experiment results show our method,with a pre-trained model and fine tun-ing,can achieve 91.3196%top-1 accuracy on Scenes21 dataset,paving the way for drones to learn to understand the scenes around them autonomously. 展开更多
关键词 scene recognition convolutional neural network knowledge transfer global navigation satellite systems(GNSS)-aided
在线阅读 下载PDF
建筑火灾全局动态疏散路径规划研究 被引量:2
12
作者 李明海 兰亚乐 +2 位作者 马骁 何鑫 杨一帆 《安全与环境学报》 北大核心 2025年第1期205-215,共11页
传统A^(*)算法被广泛应用于路径规划研究中,但该算法在处理复杂环境时存在搜索效率低和寻优路径质量不高的问题。为克服这些问题,提出了一种改进A^(*)算法,该算法结合了启发式搜索与实时动态规划的思想,能在保留A^(*)算法优势的同时显... 传统A^(*)算法被广泛应用于路径规划研究中,但该算法在处理复杂环境时存在搜索效率低和寻优路径质量不高的问题。为克服这些问题,提出了一种改进A^(*)算法,该算法结合了启发式搜索与实时动态规划的思想,能在保留A^(*)算法优势的同时显著提升其搜索效率和路径质量。在改进算法中,设计了一种新型启发式函数,该函数不仅考虑了火灾场景下的危险因素,还引入了实时动态规划策略以引导搜索过程,从而生成更高效的疏散路径。将改进算法与原始算法进行性能对比测试以及建筑火灾模拟疏散仿真对比试验,以验证改进算法的寻优性能。对比测试和试验结果表明,改进A^(*)算法在提高路径规划效率方面具有显著优势。与传统A^(*)算法相比,改进A^(*)算法生成的应急疏散路径中拐点数量少,扩展节点的数量减少96.49%,路径计算速度提升95.68%。验证了改进A^(*)算法在复杂场景下的优越性能,表明改进A^(*)算法在实际应用中具有广阔的前景。 展开更多
关键词 安全工程 A^(*)算法 启发式搜索 动态规划 火灾场景
在线阅读 下载PDF
短波中波红外折反射式共口径光学系统设计 被引量:1
13
作者 马洪涛 韩冰 +2 位作者 许洪刚 李旭 张明亮 《中国光学(中英文)》 北大核心 2025年第2期359-367,共9页
为了实现高精度、高可靠性的动态场景模拟,设计了一套短波中波多波段折反射式共口径光学系统。该系统结合了反射、折射和共口径光路的优势,该系统分为主光学系统、短波光学系统和中波光学系统,3个系统分别独立设计。通过理论计算得到光... 为了实现高精度、高可靠性的动态场景模拟,设计了一套短波中波多波段折反射式共口径光学系统。该系统结合了反射、折射和共口径光路的优势,该系统分为主光学系统、短波光学系统和中波光学系统,3个系统分别独立设计。通过理论计算得到光学系统的初始结构,再利用光学设计软件对光学参数作进一步细化,最后,按照光瞳匹配原则将各分系统组合在一起,并对系统的成像质量作进一步优化设计。利用调制传递函数(Modulation Transfer Function,MTF)和畸变等定量评价指标,仿真验证了系统设计的合理性。结果显示:所设计的短波光学系统视场角为±0.107°、焦距为2500 mm、入瞳尺寸为300 mm,MTF达到衍射极限,畸变小于0.3%;中波光学系统的视场角为±0.65°、焦距为750 mm、入瞳尺寸为300 mm,MTF接近衍射极限,畸变小于1%。该系统成像质量好、体积小、实用性强,在光电跟瞄和空间探测等领域具有较大应用潜力。 展开更多
关键词 景物模拟器 光学设计 短波中波红外成像 共口径光学系统
在线阅读 下载PDF
基于要素信息补全的自动驾驶复杂场景语义理解 被引量:1
14
作者 赵树恩 袁亮 赵东宇 《仪器仪表学报》 北大核心 2025年第4期295-305,共11页
针对自动驾驶复杂交通场景精准感知与理解过程中路侧设施及交通参与者二维视觉图像几何特征信息不全、场景语义信息缺乏等问题,构建一种基于要素信息补全的自动驾驶复杂场景语义理解模型。首先,运用稠密连接网络(DenseNet)提取视觉图像... 针对自动驾驶复杂交通场景精准感知与理解过程中路侧设施及交通参与者二维视觉图像几何特征信息不全、场景语义信息缺乏等问题,构建一种基于要素信息补全的自动驾驶复杂场景语义理解模型。首先,运用稠密连接网络(DenseNet)提取视觉图像多尺度二维特征,通过特征视线投影模块(FLoSP)将体素逆向映射至三维空间,采用维度分解残差(DDR)模块构建3D UNet,提取场景目标三维特征,实现单帧视觉图像二维特征向三维特征的转换,再在3D UNet编码器与解码器之间引入三维上下文先验层(3D CRP),并通过空洞空间金字塔池化(ASPP)与Softmax层输出场景语义补全结果,以增强语义补全模型的空间语义理解能力。同时,运用图像描述生成技术,构建基于改进VGG-16编码器和长短时记忆网络(LSTM)解码器的上下文语义嵌入场景理解语言描述模型,其中改进VGG-16编码器将不同尺度的交通场景特征进行融合与拼接,并通过投影矩阵输入到LSTM解码器,建立场景目标图像与谓词关系的语义表示,进而自动生成目标检测结果及自动驾驶决策规划建议自然语言描述。最后,运用Semantic KITTI数据集及实车实验,对所提出的复杂场景语义理解算法进行验证。结果表明,该算法相较于JS3C-Net算法平均交并比(mIoU)相对提升了11.27%,通过语义补全实现了自动驾驶复杂场景的准确感知与语义理解,为自动驾驶决策规划提供可靠依据。 展开更多
关键词 自动驾驶 场景语义补全 图像描述 场景语义理解
在线阅读 下载PDF
数字文旅体验式消费场景系统的构建研究——以荆楚文化为例 被引量:10
15
作者 李江敏 冯涵瑞 张佳泋 《四川师范大学学报(社会科学版)》 北大核心 2025年第1期96-105,203,共11页
作为悠久中华文明的重要组成部分,荆楚文化适时融入数字经济语境,是讲好中国故事、传播中华文化的重要路径。基于游客UGC数据分析,采用LDA主题模型和质性研究方法,识别出诗赋曲艺创意休闲、荆楚历史文博展陈、大江大湖行浸游艺三大荆楚... 作为悠久中华文明的重要组成部分,荆楚文化适时融入数字经济语境,是讲好中国故事、传播中华文化的重要路径。基于游客UGC数据分析,采用LDA主题模型和质性研究方法,识别出诗赋曲艺创意休闲、荆楚历史文博展陈、大江大湖行浸游艺三大荆楚文化消费场景主题,可构建一个由多方参与主体、多元场景结构、多样场景类型、多种场景体验、多重场景价值五要素组成的数字文旅体验式消费场景系统。其中,系统各要素动态表征于物理环境、空间模拟、社会主体、数智交互、行为向度、场景效能六个维度;供求交织、虚实交融、主客交互是系统内在运行逻辑,为驱动系统优化、构建沉浸式体验、促进价值共创提供了原动力、吸引力和核心力。 展开更多
关键词 数字文旅 消费场景 荆楚文化 LDA主题模型
在线阅读 下载PDF
场景思维下节庆文创产品的情感化设计研究 被引量:2
16
作者 钟蕾 张恩泽 胡江华 《包装工程》 北大核心 2025年第8期464-477,共14页
目的针对大白兔节日文创包装设计转型的问题提出一种整合场景理论、情感化理论以及层次分析法的设计研究思路,三种方法的结合能够弥补单一方法造成的文创包装设计目标模糊的困境,从而助力文创包装的文化传播与发展。方法以大白兔文创包... 目的针对大白兔节日文创包装设计转型的问题提出一种整合场景理论、情感化理论以及层次分析法的设计研究思路,三种方法的结合能够弥补单一方法造成的文创包装设计目标模糊的困境,从而助力文创包装的文化传播与发展。方法以大白兔文创包装为切入点,围绕用户消费满意度研究现状,以场景理论与情感化设计理论为主导搭建场景理论架构下的情感设计模型,层次分析法划分场景与情感需求指标进行权重计算排序,结合场景与情感高权重指标匹配消费者节日场景需求,进行文创包装情感化设计的策略转化。结果以情景层次重构法设计思路主导的策略与高权重指标模型为导向,从节日场景中提炼可用的设计因子,输出一套满足年轻消费者节日情感需求的大白兔文创礼盒。结论情景层次重构的设计思路可以有效结合场景理论与情感化设计理论的优势并作用于文创包装的文化感知与具身体验,层次分析法可以确保节日场景与文创包装情感三层次数据的合理性,并提升决策效率。 展开更多
关键词 场景理论 层次分析法(AHP) 文创包装设计 情景层次重构法 情感化思维
在线阅读 下载PDF
MR技术嵌入电子实验教学探索 被引量:1
17
作者 高玄怡 杨惠霞 +3 位作者 陈威 乔婧思 卢继华 王业亮 《实验室研究与探索》 北大核心 2025年第5期111-115,共5页
针对传统电子实验教学中学生对元器件内部构造机理的动态变化过程缺乏深入理解,导致实验调试时盲目操作的问题,提出一种基于混合现实(MR)技术的实验教学新模式,以“火灾报警电路综合设计实验”为例,展示MR技术在虚实结合场景中的应用。... 针对传统电子实验教学中学生对元器件内部构造机理的动态变化过程缺乏深入理解,导致实验调试时盲目操作的问题,提出一种基于混合现实(MR)技术的实验教学新模式,以“火灾报警电路综合设计实验”为例,展示MR技术在虚实结合场景中的应用。通过三维可视化技术,直观“透视”晶体管内部构造及载流子运行状态。实验结果表明,MR嵌入实验教学促进学生快速掌握和应用电子学知识,激发学生形象思维和创造力,培养学生深入探索的高阶思维,实现传统电子实验教学从单一模式向多维交互形式的转变,为实验教学与数字化技术的深度融合提供新的实践路径。 展开更多
关键词 混合现实技术 实验教学新模式 虚实场景 三维可视化
在线阅读 下载PDF
文旅融合视域下艺术集聚的场景构建与优化路径 被引量:2
18
作者 齐骥 赵梦笛 《艺术百家》 北大核心 2025年第1期49-56,共8页
在文化与旅游深度融合背景下,我国艺术集聚呈现出多样化的形态类型,其场景构建在释放文旅消费潜力、重塑地方文化形象等方面具有显著潜力。以场景理论为分析框架,选取“只有河南·戏剧幻城”作为研究案例,通过Python软件爬取携程网... 在文化与旅游深度融合背景下,我国艺术集聚呈现出多样化的形态类型,其场景构建在释放文旅消费潜力、重塑地方文化形象等方面具有显著潜力。以场景理论为分析框架,选取“只有河南·戏剧幻城”作为研究案例,通过Python软件爬取携程网的评论数据,结合文本分析工具,从游客感知视角探讨艺术集聚旅游目的地的场景构建以及价值表达,提出了以场景赋能艺术集聚区与旅游融合发展的优化路径:构建复合型文化舒适物系统,强化空间组合效应;创新艺术旅游产品体系,培育特色融合IP;构建多元主体协同机制,激发场景的艺术蜂鸣;提升场景溢出价值,释放艺术与文化旅游融合潜能。 展开更多
关键词 文旅融合 艺术集聚区 场景构建 只有河南·戏剧幻城
在线阅读 下载PDF
文旅场景直播中意义迁移促进产品销售的作用机制研究——以东方甄选山西行的农产品销售为例 被引量:3
19
作者 刘改芳 王涛 《旅游科学》 北大核心 2025年第1期49-68,共20页
旅游直播逐渐成为旅游及相关商品重要的销售手段之一。文章以意义迁移模型为理论视角,研究了东方甄选山西行直播过程中消费者购买农产品的意愿机制。研究发现:遗产地年代价值和传统文化意义会通过直播的互动过程转移到地方农特产品,从... 旅游直播逐渐成为旅游及相关商品重要的销售手段之一。文章以意义迁移模型为理论视角,研究了东方甄选山西行直播过程中消费者购买农产品的意愿机制。研究发现:遗产地年代价值和传统文化意义会通过直播的互动过程转移到地方农特产品,从而激发消费者购买欲望。具体来说,遗产地文旅场景直播过程中的娱乐氛围和主播名人光环,强化了消费者和直播的类社会互动过程,增强了受众的遗产认同和虚拟依恋,通过意义转移,遗产真实性及由此产生的认同情感转移至对农产品原生态和真实质朴特质的认可,从而正向影响消费者购买意愿。文章在旅游电商直播基础上提出了文旅场景直播的概念,并对文旅场景直播促进农产品消费的内在机制进行了实证分析,研究假设均得到了实证数据的支持。本研究有助于进一步深化旅游直播的理论研究,并一定程度上对文旅场景直播促进旅游产品销售和强化溢出效应提供实践指导。 展开更多
关键词 文旅场景直播 意义迁移模型 购买意愿 遗产认同
在线阅读 下载PDF
空间信息增强的室内多任务RGB-D场景理解
20
作者 孙国栋 熊晨韵 +1 位作者 刘俊杰 张杨 《北京航空航天大学学报》 北大核心 2025年第7期2209-2217,共9页
移动机器人在探索三维空间时需要获取大量场景信息,这些信息包含语义、实例对象、位置关系等多个方面。理解场景信息的准确性和计算复杂性是移动端关注的2个焦点。基于此,提出了一种适用于室内场景理解的空间信息增强的多任务学习方法... 移动机器人在探索三维空间时需要获取大量场景信息,这些信息包含语义、实例对象、位置关系等多个方面。理解场景信息的准确性和计算复杂性是移动端关注的2个焦点。基于此,提出了一种适用于室内场景理解的空间信息增强的多任务学习方法。该方法由包含通道-空间注意力融合模块的编码器及多任务头的解码器组成,可同时实现语义分割、全景分割(实例分割)和方向估计多个任务。其中,通道-空间注意力融合模块旨在增强RGB和深度各自的模态特征,由简单卷积构成的空间注意力机制可降低收敛速度,与通道注意力机制信息融合后,进一步强化全局信息的位置特征。语义分支的上下文模块位于解码器后,为像素级语义信息提供有力支持,有助于减小模型大小。同时,设计了一种基于硬参数共享且能均衡训练任务的损失函数,探讨合适的轻量级骨干网络和任务数量对提升场景理解算法性能的影响。在新增标签注释的室内数据集NYUv2和SUN RGB-D上,评估了多任务学习方法的有效性,综合性全景分割精度分别提高了2.93%和4.87%。 展开更多
关键词 场景理解 多任务学习 RGB-D 空间信息 室内场景
在线阅读 下载PDF
上一页 1 2 229 下一页 到第
使用帮助 返回顶部