期刊文献+
共找到542篇文章
< 1 2 28 >
每页显示 20 50 100
Semantic segmentation of camouflage objects via fusing reconstructed multispectral and RGB images
1
作者 Feng Huang Gonghan Yang +5 位作者 Jing Chen Yixuan Xu Jingze Su Guimin Huang Shu Wang Wenxi Liu 《Defence Technology(防务技术)》 2025年第8期324-337,共14页
Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging du... Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing. 展开更多
关键词 Camouflage object detection Reconstructed multispectral image(MSI) Unmanned aerial vehicle(UAV) semantic segmentation Remote sensing
在线阅读 下载PDF
A semantic segmentation-based underwater acoustic image transmission framework for cooperative SLAM
2
作者 Jiaxu Li Guangyao Han +1 位作者 Shuai Chang Xiaomei Fu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期339-351,共13页
With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection abil... With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection ability of a single vehicle limits the SLAM performance in wide areas.Thereby,cooperative SLAM using multiple vehicles has become an important research direction.The key factor of cooperative SLAM is timely and efficient sonar image transmission among underwater vehicles.However,the limited bandwidth of underwater acoustic channels contradicts a large amount of sonar image data.It is essential to compress the images before transmission.Recently,deep neural networks have great value in image compression by virtue of the powerful learning ability of neural networks,but the existing sonar image compression methods based on neural network usually focus on the pixel-level information without the semantic-level information.In this paper,we propose a novel underwater acoustic transmission scheme called UAT-SSIC that includes semantic segmentation-based sonar image compression(SSIC)framework and the joint source-channel codec,to improve the accuracy of the semantic information of the reconstructed sonar image at the receiver.The SSIC framework consists of Auto-Encoder structure-based sonar image compression network,which is measured by a semantic segmentation network's residual.Considering that sonar images have the characteristics of blurred target edges,the semantic segmentation network used a special dilated convolution neural network(DiCNN)to enhance segmentation accuracy by expanding the range of receptive fields.The joint source-channel codec with unequal error protection is proposed that adjusts the power level of the transmitted data,which deal with sonar image transmission error caused by the serious underwater acoustic channel.Experiment results demonstrate that our method preserves more semantic information,with advantages over existing methods at the same compression ratio.It also improves the error tolerance and packet loss resistance of transmission. 展开更多
关键词 semantic segmentation Sonar image transmission Learning-based compression
在线阅读 下载PDF
End-to-end dilated convolution network for document image semantic segmentation 被引量:8
3
作者 XU Can-hui SHI Cao CHEN Yi-nong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1765-1774,共10页
Semantic segmentation is a crucial step for document understanding.In this paper,an NVIDIA Jetson Nano-based platform is applied for implementing semantic segmentation for teaching artificial intelligence concepts and... Semantic segmentation is a crucial step for document understanding.In this paper,an NVIDIA Jetson Nano-based platform is applied for implementing semantic segmentation for teaching artificial intelligence concepts and programming.To extract semantic structures from document images,we present an end-to-end dilated convolution network architecture.Dilated convolutions have well-known advantages for extracting multi-scale context information without losing spatial resolution.Our model utilizes dilated convolutions with residual network to represent the image features and predicting pixel labels.The convolution part works as feature extractor to obtain multidimensional and hierarchical image features.The consecutive deconvolution is used for producing full resolution segmentation prediction.The probability of each pixel decides its predefined semantic class label.To understand segmentation granularity,we compare performances at three different levels.From fine grained class to coarse class levels,the proposed dilated convolution network architecture is evaluated on three document datasets.The experimental results have shown that both semantic data distribution imbalance and network depth are import factors that influence the document’s semantic segmentation performances.The research is aimed at offering an education resource for teaching artificial intelligence concepts and techniques. 展开更多
关键词 semantic segmentation document images deep learning NVIDIA jetson nano
在线阅读 下载PDF
特征级语义感知引导的多模态图像融合算法 被引量:1
4
作者 张梅 金叶 +1 位作者 朱金辉 贺霖 《电子与信息学报》 北大核心 2025年第8期2909-2918,共10页
在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务... 在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务,但是其效果受限于语义先验和融合任务之间的交互不足且没有考虑到不同特征差异性的影响。因此,该文提出了特征级语义感知引导的多模态图像融合算法,使语义先验知识与融合任务进行充分交互,提高融合结果在后续的分割任务中的性能。对于语义特征和融合图像特征两者的差异性,提出了双特征交互模块,以实现不同特征的充分交互和选择。对于红外和可见光两种不同模态特征的差异性,提出了多源空间注意力融合模块,以实现不同模态信息的有效集成和互补。该文在3个公共数据集上进行了实验,结果表明该方法的融合结果优于其他方法且泛化能力较好,而且在各种融合算法联合分割任务的性能比较实验中也表明了该方法在分割任务中的优越性。 展开更多
关键词 图像融合 联合分割任务 语义感知 特征级引导
在线阅读 下载PDF
跨模态多层特征融合的遥感影像语义分割 被引量:1
5
作者 李智杰 程鑫 +3 位作者 李昌华 高元 薛靖裕 介军 《计算机科学与探索》 北大核心 2025年第4期989-1000,共12页
多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不... 多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不充分,融合效果不理想。针对这些问题,提出了一种基于多模态特征提取和多层特征融合的遥感影像语义分割模型。通过构建双分支编码器,模型能够分别提取遥感影像的光谱信息和归一化数字表面模型(nDSM)的高程信息,并深入挖掘nDSM的几何形状信息。引入跨层丰富模块细化完善每层特征,从深层到浅层充分利用多层的特征信息。完善后的特征通过注意力特征融合模块,对特征进行差异性互补和交叉融合,以减轻分支结构之间的差异,充分发挥多模态特征的优势,从而提高遥感影像分割精度。在ISPRS Vaihingen和Potsdam数据集上进行实验,mF1分数分别达到了90.88%和93.41%,平均交互比(mIoU)分别达到了83.49%和87.85%,相较于当前主流算法,该算法实现了更准确的遥感影像语义分割。 展开更多
关键词 遥感影像 归一化数字表面模型(nDSM) 语义分割 特征提取 特征融合
在线阅读 下载PDF
基于CNN和Transformer交叉教学的半监督医学图像分割 被引量:4
6
作者 杨云 胡雯青 +1 位作者 杨虹 吴亚男 《陕西科技大学学报》 北大核心 2025年第1期185-192,共8页
由于医学图像分割领域缺乏高质量的标注数据,半监督学习方法在医学图像语义分割任务中受到高度重视.为了充分利用卷积神经网络(Convolutional Neural Network,CNN)和Transformer在半监督学习中的优势,本文提出一种基于CNN与Transformer... 由于医学图像分割领域缺乏高质量的标注数据,半监督学习方法在医学图像语义分割任务中受到高度重视.为了充分利用卷积神经网络(Convolutional Neural Network,CNN)和Transformer在半监督学习中的优势,本文提出一种基于CNN与Transformer交叉教学的半监督医学图像分割方法.该方法将经典的深度协同训练从一致性正则化简化为交叉教学,利用循环伪标签方案使两个网络的预测差异转换为无监督损失,以鼓励两个网络具有一致的低熵预测.所提方法在ISIC 2018数据集上进行实验,在采用20%的标注比例时,Dice系数和Jaccard系数分别达到87.25%和79.17%,相比于监督U-Net++的训练结果分别提升了2.89%和3.53%,并且优于目前主流的半监督学习方法,验证了所提方法在半监督医学图像分割上的有效性和泛化性. 展开更多
关键词 半监督学习 图像语义分割 交叉教学 循环伪标签
在线阅读 下载PDF
融合动态特征增强的遥感建筑物分割 被引量:1
7
作者 肖振久 田昊 +1 位作者 张杰浩 曲海成 《光电工程》 北大核心 2025年第3期12-24,共13页
针对遥感地物建筑物图像目标尺度差异大、样本空间分布不均衡、地物边界模糊、场景区域跨度大所导致的分割效果不佳问题,本文提出一种融合动态特征增强高精度遥感建筑物分割算法。首先,构建New_GhostNetV2网络,利用自适应上下文感知卷积... 针对遥感地物建筑物图像目标尺度差异大、样本空间分布不均衡、地物边界模糊、场景区域跨度大所导致的分割效果不佳问题,本文提出一种融合动态特征增强高精度遥感建筑物分割算法。首先,构建New_GhostNetV2网络,利用自适应上下文感知卷积,增强算法对样本空间特征的捕捉能力。其次,采用Ghost Convolution结合跳跃连接和特征分支策略设计多层级信息增强模块,增强特征整合。随后引入级联注意力CGA(cascaded group attention),通过组内独立注意力计算,加强模型对多样化地物形态的适应性。最后,通过动态深度特征增强器构造特征融合模块,进一步加强模型捕获能力。在WHU数据集上实验结果表明:改进算法较基线模型F1-Score提高8.57%,mIoU提高12.48%,与其他主流语义分割模型相比,改进DeepLabv3+具有更好的分割精度。 展开更多
关键词 遥感图像 语义分割 特征增强 信息整合
在线阅读 下载PDF
基于双路径监督的遥感图像语义分割网络 被引量:1
8
作者 刘春娟 乔泽 +3 位作者 闫浩文 吴小所 王嘉伟 辛钰强 《北京航空航天大学学报》 北大核心 2025年第3期732-741,共10页
为解决遥感图像语义分割任务中目标物体边界分类模糊的问题,提出双路径监督与注意力筛选网络。引入可监督的边界提取模块来增加边界信息通道,提高边界信息在语义分割中的权重,增强对目标物体边界像素的注意力;引入注意力筛选模块,通过... 为解决遥感图像语义分割任务中目标物体边界分类模糊的问题,提出双路径监督与注意力筛选网络。引入可监督的边界提取模块来增加边界信息通道,提高边界信息在语义分割中的权重,增强对目标物体边界像素的注意力;引入注意力筛选模块,通过注意力图筛选出浅层网络中的空间细节信息和深层网络中的抽象语义信息,舍弃网络中的冗余信息,防止过拟合。双路径监督与注意力筛选网络在Potsdam数据集和Jiage数据集上的平均交并比分别为85.44%和86.07%,比次优网络MagNet和SAPNet分别提升了1.24%和1.28%、1.54%和1.27%。实验结果表明,所提网络能更精准地分割目标物体的边界。 展开更多
关键词 遥感图像 语义分割 可监督 边界信息 注意力筛选
在线阅读 下载PDF
基于自注意力机制的高分遥感影像语义分割 被引量:1
9
作者 杨军 张金影 康玥 《哈尔滨工程大学学报》 北大核心 2025年第2期344-354,共11页
针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助... 针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助于捕获局部特征;在编码器分支中提出线性的多头自注意力模块以降低模型的计算复杂度;设计一个解码器来恢复特征图分辨率,通过级联操作整合各层级的特征并生成高分辨率的语义分割结果。所提算法在ISPRS Vaihingen和Potsdam数据集上的分割结果的mF1分别达到了90.77%和92.36%,与目前主流算法相比,不透水表面、建筑、低矮植物、树木类的分割准确率及总体分割准确率均有提高。本文算法构建的线性多头自注意力网络是一种高效的高分辨率遥感影像语义分割模型。 展开更多
关键词 高分辨率遥感影像 多头自注意力 深度可分离卷积 语义分割 特征提取 卷积神经网络 编码器 解码器
在线阅读 下载PDF
一种基于多尺度特征和有效注意力的病理图像分割方法
10
作者 王建宇 王朝立 +1 位作者 孙占全 刘晓虹 《小型微型计算机系统》 北大核心 2025年第6期1416-1426,共11页
病理图像分割作为病理学图像分析的一项重要任务,为医生对患者的病情进行诊断以及后续治疗方案的制定起到了至关重要的作用.然而,病理图像因其复杂的结构,例如血管、空洞、图像中病变区域与正常区域间边界模糊及对比差异小等问题,使得... 病理图像分割作为病理学图像分析的一项重要任务,为医生对患者的病情进行诊断以及后续治疗方案的制定起到了至关重要的作用.然而,病理图像因其复杂的结构,例如血管、空洞、图像中病变区域与正常区域间边界模糊及对比差异小等问题,使得现有模型分割效果不理想.因此,本文提出了一种基于多尺度特征和有效注意力的病理图像分割模型,其挑战性困难在于如何有效地利用空间和通道的相关性从病理图像中精确分割边界平滑的癌变组织.首先,该模型用金字塔视觉Transformer架构对输入图像提取包含丰富语义信息的多尺度特征,再用级联融合解码器对高层特征进行聚合,得到全局映射图指导后续解码过程.其次,在解码器部分,提出局部增强的反向注意力模块和联合注意力模块对级联解码器中的特征进行有效处理.最后,使用深度监督的方式对模型进行有效训练,并将提出的方法在3个病理图像数据集上与多个先进的分割模型进行对比实验.大量的定性以及定量结果显示,本文提出的方法比其他模型表现出更好的性能,可以对病理图像进行有效的分割. 展开更多
关键词 病理图像 语义分割 多尺度特征 注意力机制 TRANSFORMER
在线阅读 下载PDF
基于语义分割的长白山火山岩性遥感数据集
11
作者 李成范 韩晶鑫 +5 位作者 盘晓东 刘岚 颜丽丽 康建红 刘学锋 肖舟怡 《岩石学报》 北大核心 2025年第4期1442-1453,共12页
火山岩性数据集是利用深度学习进行火山遥感岩性智能识别的关键和数据基础。当前,缺乏可信的火山岩性遥感数据集,制约了大区域、复杂地质环境下火山岩性智能识别的快速发展。本文在归纳和整合长白山火山岩性主要类型的基础上,以哨兵2(Se... 火山岩性数据集是利用深度学习进行火山遥感岩性智能识别的关键和数据基础。当前,缺乏可信的火山岩性遥感数据集,制约了大区域、复杂地质环境下火山岩性智能识别的快速发展。本文在归纳和整合长白山火山岩性主要类型的基础上,以哨兵2(Sentinel-2)遥感图像为数据源,结合地质资料和野外核查制作了一个基于深度学习语义分割的长白山火山岩性遥感数据集。该数据集内容包含遥感图像、标签数据、说明文件,岩性类型覆盖玄武质火山岩、粗面质火山岩、碱流质火山岩、火山岩性混合堆积(碎屑堆积、火山泥流堆积、火山空落堆积);共计36张样本图像,单张图像尺寸为395像元×395像元,空间分辨率为10m。利用经典的深度卷积神经网络(deep convolution neural network,DCNN)DeepLab V3+模型对火山岩性数据集进行了测试和验证,实验结果表明本文数据集具有较强的火山岩性描述能力,鲁棒性和泛化性较好,总体准确率均高于88%;特征训练与提取过程中人为干扰较少,自动化水平较高。可为火山岩性智能识别提供数据基础,提高野外火山遥感岩性调查的准确性和效率。 展开更多
关键词 长白山火山 语义分割 岩性数据集 岩性识别 遥感图像
在线阅读 下载PDF
基于改进的DeepLabV3+网络的Sentinel-1影像水体提取
12
作者 赵兴旺 赵妍 +1 位作者 刘超 刘春阳 《测绘通报》 北大核心 2025年第3期66-70,共5页
为了提高雷达影像提取水体的精度,本文以2023年Sentinel-1系列影像为数据源,在DeepLabV3+网络模型的基础上优化主干网络,并融合SE通道注意力机制,提出了一种改进的深度学习网络模型SEDeepLabV3+,针对改进的模型进行了消融试验,并以7月3... 为了提高雷达影像提取水体的精度,本文以2023年Sentinel-1系列影像为数据源,在DeepLabV3+网络模型的基础上优化主干网络,并融合SE通道注意力机制,提出了一种改进的深度学习网络模型SEDeepLabV3+,针对改进的模型进行了消融试验,并以7月31日北京市昌平区水体提取为例,对该模型进行了验证。试验结果表明,使用改进后的SEDeepLabV3+方法提取水体时,平均交并比与像素准确率能够达到88.55%和93.49%,与DeepLabV3+、HRNet、U-Net相比,平均交并比分别提高了2.26%、2.31%和5.08%,平均像素准确率分别提高了0.76%、0.80%和3.07%,改进后的SEDeepLabV3+不仅具有更轻量级的网络结构,而且能够有效地提高水体提取精度和效率。 展开更多
关键词 DeepLabV3+ 水体提取 SE通道注意力机制 Sentinel-1影像 语义分割
在线阅读 下载PDF
基于Transformer与深度可分离卷积的轻量级遥感图像语义分割
13
作者 马飞 张森峰 +1 位作者 杨飞霞 徐光宪 《电光与控制》 北大核心 2025年第7期33-38,66,共7页
遥感图像语义分割在环境变化监测、汽车辅助驾驶等领域具有广泛的应用。遥感图像在语义对象层面表现出较大的类内变化和较小的类间差异,导致分割模型精度受限且耗费计算资源。为此提出了一种基于Transformer与深度可分离卷积的轻量级遥... 遥感图像语义分割在环境变化监测、汽车辅助驾驶等领域具有广泛的应用。遥感图像在语义对象层面表现出较大的类内变化和较小的类间差异,导致分割模型精度受限且耗费计算资源。为此提出了一种基于Transformer与深度可分离卷积的轻量级遥感图像语义分割方法。首先,引入权重自适应的多头自注意力,在全局范围内对远距离像素关联性建模,获取丰富的上下文信息;其次,构建堆叠的深度可分离卷积层,以低计算复杂度减少空间细节信息的丢失;此外利用线性注意力机制设计特征聚合模块,对全局情景信息与空间细节信息进行融合。经过在Vaihingen和Potsdam数据集上测试结果表明,所提方法的分割总体准确率分别高达92.6%和92.1%,GFLOPs仅为11.5,不仅有效提升了分割精度,而且大大降低了计算复杂度。 展开更多
关键词 遥感图像 语义分割 深度学习 深度可分离卷积 线性注意力机制
在线阅读 下载PDF
基于混合深度卷积的遥感影像语义分割
14
作者 田智慧 郎杰 魏海涛 《计算机应用与软件》 北大核心 2025年第8期253-258,290,共7页
高分辨率遥感影像语义分割作为遥感解译的重要组成部分,其中包含了大量复杂的地物特征信息,且不同地物目标尺寸相差较大,这为遥感影像语义分割带来了一定困难。针对该问题,设计并实现一种基于混合深度卷积的遥感影像语义分割模型MDU-Ne... 高分辨率遥感影像语义分割作为遥感解译的重要组成部分,其中包含了大量复杂的地物特征信息,且不同地物目标尺寸相差较大,这为遥感影像语义分割带来了一定困难。针对该问题,设计并实现一种基于混合深度卷积的遥感影像语义分割模型MDU-Net。该模型在编码器中采用分阶段的并行网络结构,通过对不同层级中子分支动态的分配权重来实现编码器的动态网络结构,同时引入一种通道和空间注意力模块来改进编码器到解码器的特征融合效果,提升语义分割效果。在ISPRS validation数据集上的测试集精度比DeepLabv3+提高3.44百分点。实验结果表明,该网络在高分辨率遥感影像分割问题中取得了良好的分割效果。 展开更多
关键词 语义分割 遥感影像 深度学习 特征融合
在线阅读 下载PDF
融合多元特征的E-TransUNet模型施工道路要素分类
15
作者 胡荣明 张宵宵 +2 位作者 竞霞 廖雨欣 黄旭昆 《遥感信息》 北大核心 2025年第2期11-19,共9页
针对施工道路影像中因背景信息复杂导致道路提取错分、漏分及边缘粗糙的问题,提出了一种融合多元特征的E-TransUNet模型施工道路要素提取方法。E-TransUNet模型通过设计多元特征增强模块对图像特征信息进行增强;在模型下采样中融入空洞... 针对施工道路影像中因背景信息复杂导致道路提取错分、漏分及边缘粗糙的问题,提出了一种融合多元特征的E-TransUNet模型施工道路要素提取方法。E-TransUNet模型通过设计多元特征增强模块对图像特征信息进行增强;在模型下采样中融入空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)模块,增强网络对道路影像多尺度特征的提取能力;跳跃连接部分加入卷积注意力(convolutional block attention module,CBAM)模块,从不同维度上捕获道路特征之间的相关性;最后组合采用Dice loss和CE loss作为损失函数解决样本数量不均衡问题。结果表明,该方法对施工道路要素的提取在OA、MIoU和MPA指标分别达到了93.30%、80.37%和91.19%,相比其他网络U-Net、DeeplabV3+、Swin-Unet、HRNet和SegFormer提取效果更好,为施工道路提供了准确的要素提取方法。 展开更多
关键词 施工道路提取 特征增强 语义分割 TRANSFORMER 图像处理
在线阅读 下载PDF
多尺度大核注意力遥感图像语义分割实验设计
16
作者 项学智 宁怡博 +2 位作者 王路 贲𪾢烨 乔玉龙 《实验室研究与探索》 北大核心 2025年第10期56-62,共7页
针对遥感图像语义分割任务中卷积神经网络(CNN)远程建模能力不足与Transformer计算复杂度过高的问题,提出一种基于多尺度大核注意力(MSLKA)的遥感图像语义分割网络MSLKASeg。MSLKA将多尺度机制与大核注意力(LKA)相结合,并引入门控机制... 针对遥感图像语义分割任务中卷积神经网络(CNN)远程建模能力不足与Transformer计算复杂度过高的问题,提出一种基于多尺度大核注意力(MSLKA)的遥感图像语义分割网络MSLKASeg。MSLKA将多尺度机制与大核注意力(LKA)相结合,并引入门控机制以抑制无关信息,能在保持较低复杂度的同时,生成多粒度级别的注意力图,从而有效聚合全局和局部信息。在两个典型数据集实验表明,所提方法取得了具有竞争力的结果。在ISPRS Vaihingen数据集上,mF1和mIoU得分分别达到了90.31%和82.73%;在LoveDA Urban数据集,mF1和mIoU得分分别为66.24%和50.41%。多场景实验结果表明,所提方法有效提升了遥感图像语义分割效果。 展开更多
关键词 遥感图像 语义分割 多尺度大核 大核注意力
在线阅读 下载PDF
融合显著边界约束的弱监督语义分割方法
17
作者 白雪飞 张丽娜 王文剑 《计算机工程与应用》 北大核心 2025年第19期214-225,共12页
针对现有弱监督语义分割方法存在的类激活不足、伪标签边界不清晰的问题,提出了融合显著边界约束的弱监督语义分割方法。提出由共享参数的孪生网络作为类激活图生成网络,将仿射变换前后的图像作为孪生网络两个分支的输入,得到不同的类... 针对现有弱监督语义分割方法存在的类激活不足、伪标签边界不清晰的问题,提出了融合显著边界约束的弱监督语义分割方法。提出由共享参数的孪生网络作为类激活图生成网络,将仿射变换前后的图像作为孪生网络两个分支的输入,得到不同的类激活图后,通过一致性损失函数融合仿射变换前后的互补信息,以生成具有完整信息的类激活图。设计显著性修正模块,在类激活图中引入边界约束,抑制背景信息的错误激活;同时,设计显著性亲和模块从显著图中学习像素之间的亲和矩阵,进一步细化初始伪标签,提升模型的语义分割性能。实验结果表明,该方法在PASCAL VOC 2012验证集上的mIoU值为71.4%,与基线相比,性能提升了2.1个百分点,测试集上的mIoU值为70.8%;在COCO 2014验证集上的mIoU值为39.2%,展现了良好的分割结果,该方法可以更好地完成弱监督语义分割任务。 展开更多
关键词 弱监督语义分割 图像级标签 TRANSFORMER 卷积神经网络 孪生网络 显著图
在线阅读 下载PDF
改进U-Net模型的隧道掌子面图像语义分割研究
18
作者 陈登峰 程静 +1 位作者 赵蕾 何拓航 《防灾减灾工程学报》 北大核心 2025年第4期776-783,共8页
隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据。将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征... 隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据。将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征传递到高层的跳跃连接导致特征映射过大。因此,提出加入空洞空间卷积池化金字塔模块ASPP和卷积注意力模块CBAM的改进U-Net模型。在U-Net模型的跳跃连接过程中加ASPP,利用不同膨胀率的空洞卷积捕获不同尺度的上下文信息,融合不同感受野的信息,从而更全面的理解图像内容;U-Net模型的下采样过程中加入CBAM,使网络模型更加关注有用的特征,从而增强特征的表达能力。实验结果表明,改进的网络模型相较于原始U-Net模型分割和识别性能有显著提升,在某隧道工程掌子面岩体图像数据集上Precision达到93.04%,mIoU达到74.98%,mPA达到78.89%。 展开更多
关键词 隧道掌子面 图像语义分割 卷积注意力模块 空洞空间卷积池化金字塔模块
在线阅读 下载PDF
全局感知与多尺度特征融合的城市道路语义分割
19
作者 邬开俊 张治瑞 +1 位作者 汪滢 安立伟 《光学精密工程》 北大核心 2025年第14期2262-2277,共16页
语义分割在自动驾驶与智能交通工程应用中发挥着不可替代的作用。针对语义分割现存分割边界模糊、物体间相互遮挡及物体多尺度差异造成的分割精度不足问题,提出全局感知与多尺度特征融合的城市道路语义分割网络。为改善分割边界模糊的问... 语义分割在自动驾驶与智能交通工程应用中发挥着不可替代的作用。针对语义分割现存分割边界模糊、物体间相互遮挡及物体多尺度差异造成的分割精度不足问题,提出全局感知与多尺度特征融合的城市道路语义分割网络。为改善分割边界模糊的问题,设计全局感知模块,通过联合空间和通道信息增强特征之间的交互以感知全局信息;物体间相互遮挡情况下模型往往需要提升被遮挡区域的敏感度,为此提出多尺度特征融合模块以兼顾大小物体的分割精度;采用综合性的多约束特征平滑损失评估模型,进一步平滑特征,优化目标以求最优解。经实验验证,本文方法于Cityscapes数据集上在不同分辨率情况下mIoU值分别提升0.5%,0.9%,1.7%,在ADE20K数据集上mIoU值提升2.1%。相比于现有语义分割网络模型,本文方法分割效果有进一步提升。 展开更多
关键词 深度学习 图像处理 语义分割 特征融合 损失函数
在线阅读 下载PDF
基于方向感知和双路径编码器的遥感图像道路提取
20
作者 刘明皓 代俊 +1 位作者 宋雨芯 何志鹏 《地理与地理信息科学》 北大核心 2025年第4期25-34,共10页
从遥感图像中提取道路信息是遥感语义分割的重要任务。针对当前深度学习网络模型在道路信息遥感提取方面存在的诸如道路断裂、虚假道路等问题,该文提出一种基于方向感知和双路径编码器的DPMSRE-Net模型。首先,在CNN和Swin Transformer... 从遥感图像中提取道路信息是遥感语义分割的重要任务。针对当前深度学习网络模型在道路信息遥感提取方面存在的诸如道路断裂、虚假道路等问题,该文提出一种基于方向感知和双路径编码器的DPMSRE-Net模型。首先,在CNN和Swin Transformer双路径编码器的融合部分设计了多尺度条形注意力融合(MSAF)模块,该模块通过条形注意力加强模型对道路方向的感知,使网络能够增强在不同尺度和通道上的感知能力,更好地融合双路径编码器的特征信息;其次,在编码器和解码器的核心桥接部分设计了多尺度交叉方向注意力(MSCA)模块,有助于网络学习丰富的上下文信息和拓扑结构,提升对道路细节的捕捉能力。基于CHN6-CUG与DeepGlobe两个道路数据集的对比实验表明,DPMSRE-Net在IoU、F1分数上均优于D-LinkNet、U-Net等语义分割模型。 展开更多
关键词 遥感图像 道路提取 语义分割 双编码器 多尺度
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部