Advanced glycation end products(AGE) are potential harmful substances formed in the advanced Maillard reaction and increasingly investigated in muscle foods. However, the contribution of oxidation to the AGE formation...Advanced glycation end products(AGE) are potential harmful substances formed in the advanced Maillard reaction and increasingly investigated in muscle foods. However, the contribution of oxidation to the AGE formation is controversial. Moreover, reports on glyoxal(GO) induced AGE formation in chicken meat emulsion(CME) are limited. Thus, the effects of GO on emulsifying properties, rheological behavior and AGE formation in CME were investigated. Our findings exhibited that levels of Nε-carboxymethyllysine(CML) and Nε-carboxyethyllysine(CEL) were associated with lipid oxidation but not significantly(P > 0.05). Levels of AGE peaked when GO concentration ranged from 5 mmol/L(CML) to 10 mmol/L(CEL). The droplets’ aggregation associated with the disulfide bond when the concentration of GO was at 0.5–30 mmol/L while non-disulfide bond association occurred at 30–50 mmol/L GO concentration. In conclusion, compared to the effect of oxidation, GO exhibited the main role in the AGE formation of CME. This study will provide theoretical significance for further understanding and controlling the formation of AGE in CME.展开更多
This paper reviews history,definitions,forms of the spices,and analyzes the spice of the use of principles,methods in the meat products,and puts forward the current problems and prospects.
Female domesticated yaks were artificially inseminated with semen taken from wild yaks and the offspring used to form a nucleus breeding herd of crossbred animals. The meat production of the first generation(F1 ×...Female domesticated yaks were artificially inseminated with semen taken from wild yaks and the offspring used to form a nucleus breeding herd of crossbred animals. The meat production of the first generation(F1 × F2)from breedtng within the nucleus herd was assessed by slaughter and carcass dissection of males. One group(no. =14)was slaughtered at 6 months of age and the second(no. = 12)at 18months. Crossbred yaks were significantly heavier(P<0.01)at 6 months(74.7(s. e. 10.41)kg v. 59.8(s.e. 10.23)kg)and at 18 months(150.5(s. e. 56.1)kg v. 117.7(s. e. 17.4)kg)than domesticated ones,The killing-out proportion(0.47)was similar at both ages and for both groups of animals. Carcass weight,meat weight and the yield of prime cuts were higher for crossbred animals than for domestic yak at both ages.展开更多
In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology bas...In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.展开更多
Sodium chloride is one of the most widely used additives in meat curing.However,cured meat products contribute to a portion of the total sodium dietary intake.Consumers and researchers'concern about excessive sodi...Sodium chloride is one of the most widely used additives in meat curing.However,cured meat products contribute to a portion of the total sodium dietary intake.Consumers and researchers'concern about excessive sodium intake has prompted the food industry to consider ways to reduce salt content of cured meat products.The aim of this review is to provide a broad but comprehensive understanding of salt reduction strategies for cured meat products.The implications and limitations of each approach were discussed.Green technologies treatments,such as ultrasonic technology,high-pressure processing,seem to be potential to ensure microbiological safety in low-sodium cured meat products.However,these novel technologies can cause protein and fat oxidization in meat products.A combination of multiple treatments could give the desired effect.In addition,different parameter conditions need to be set according to the specific meat to achieve better salt reduction effect.展开更多
For the purpose of satisfying high demands for taste,color,flavor,and storage of meat products,water retention agents(WRAs)play an important role.Phosphate has been widely used as an attractive functional material for...For the purpose of satisfying high demands for taste,color,flavor,and storage of meat products,water retention agents(WRAs)play an important role.Phosphate has been widely used as an attractive functional material for water retention in current practical applications.However,excessive phosphate addition and longterm consumption may be harmful impacts on health and the environment.Therefore,it is vital to develop safe and efficient phosphate-free WRAs for further improving water-holding capacity(WHC)efficacy and edible safety,especially in meat products.In particular,sugar water retention agents(SWRAs)are increasingly popular because of their perfect safety,excellent WHC,and superior biological properties.This review discusses the inducements and mechanisms underlying water loss in meat products.In addition,we focused on the research progresses and related mechanisms of SWRAs in the WHC of meat products and its unique biological functions,as well as the extraction technology.Finally,the future application and development of SWRA were prospected.展开更多
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0579)the China Scholarship Council(No.202006850022)+1 种基金supported by Agriculture Research System of China(CARS-41-Z)Science and Technology Project of Nanjing City(No.202002040)。
文摘Advanced glycation end products(AGE) are potential harmful substances formed in the advanced Maillard reaction and increasingly investigated in muscle foods. However, the contribution of oxidation to the AGE formation is controversial. Moreover, reports on glyoxal(GO) induced AGE formation in chicken meat emulsion(CME) are limited. Thus, the effects of GO on emulsifying properties, rheological behavior and AGE formation in CME were investigated. Our findings exhibited that levels of Nε-carboxymethyllysine(CML) and Nε-carboxyethyllysine(CEL) were associated with lipid oxidation but not significantly(P > 0.05). Levels of AGE peaked when GO concentration ranged from 5 mmol/L(CML) to 10 mmol/L(CEL). The droplets’ aggregation associated with the disulfide bond when the concentration of GO was at 0.5–30 mmol/L while non-disulfide bond association occurred at 30–50 mmol/L GO concentration. In conclusion, compared to the effect of oxidation, GO exhibited the main role in the AGE formation of CME. This study will provide theoretical significance for further understanding and controlling the formation of AGE in CME.
文摘This paper reviews history,definitions,forms of the spices,and analyzes the spice of the use of principles,methods in the meat products,and puts forward the current problems and prospects.
文摘Female domesticated yaks were artificially inseminated with semen taken from wild yaks and the offspring used to form a nucleus breeding herd of crossbred animals. The meat production of the first generation(F1 × F2)from breedtng within the nucleus herd was assessed by slaughter and carcass dissection of males. One group(no. =14)was slaughtered at 6 months of age and the second(no. = 12)at 18months. Crossbred yaks were significantly heavier(P<0.01)at 6 months(74.7(s. e. 10.41)kg v. 59.8(s.e. 10.23)kg)and at 18 months(150.5(s. e. 56.1)kg v. 117.7(s. e. 17.4)kg)than domesticated ones,The killing-out proportion(0.47)was similar at both ages and for both groups of animals. Carcass weight,meat weight and the yield of prime cuts were higher for crossbred animals than for domestic yak at both ages.
基金financially supported by National Key R&D Program(2021YFF0701905)。
文摘In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.
基金financially supported by Youth Talent Support Programme of Guangdong Provincial Association for Science and Technology(SKXRC202317)the Open Project of Beijing Laboratory of Food Quality and Safety/Key Laboratory of Alcoholic Beverages Quality and Safety of China Light Industry(FQS-202201)+3 种基金Characteristic Innovation Project of Guangdong Universities(2022KTSCX058)Special Projects in Key Field of Guangdong Universities(2022ZDZX4015,2022ZDZX4016)Guangdong Maoming Binhai New Area Marine Fishery Industrial Park Project(0835-220FA8102621)Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology(2021B1212040013)。
文摘Sodium chloride is one of the most widely used additives in meat curing.However,cured meat products contribute to a portion of the total sodium dietary intake.Consumers and researchers'concern about excessive sodium intake has prompted the food industry to consider ways to reduce salt content of cured meat products.The aim of this review is to provide a broad but comprehensive understanding of salt reduction strategies for cured meat products.The implications and limitations of each approach were discussed.Green technologies treatments,such as ultrasonic technology,high-pressure processing,seem to be potential to ensure microbiological safety in low-sodium cured meat products.However,these novel technologies can cause protein and fat oxidization in meat products.A combination of multiple treatments could give the desired effect.In addition,different parameter conditions need to be set according to the specific meat to achieve better salt reduction effect.
基金funded by National Natural Science Foundation of China(51901160)。
文摘For the purpose of satisfying high demands for taste,color,flavor,and storage of meat products,water retention agents(WRAs)play an important role.Phosphate has been widely used as an attractive functional material for water retention in current practical applications.However,excessive phosphate addition and longterm consumption may be harmful impacts on health and the environment.Therefore,it is vital to develop safe and efficient phosphate-free WRAs for further improving water-holding capacity(WHC)efficacy and edible safety,especially in meat products.In particular,sugar water retention agents(SWRAs)are increasingly popular because of their perfect safety,excellent WHC,and superior biological properties.This review discusses the inducements and mechanisms underlying water loss in meat products.In addition,we focused on the research progresses and related mechanisms of SWRAs in the WHC of meat products and its unique biological functions,as well as the extraction technology.Finally,the future application and development of SWRA were prospected.