Mode locking can be effectively achieved by using the thermo-optic effects in the whispering gallery mode(WGM)optical microcavity,without the help of external equipment.Therefore,it has the advantages of small size,lo...Mode locking can be effectively achieved by using the thermo-optic effects in the whispering gallery mode(WGM)optical microcavity,without the help of external equipment.Therefore,it has the advantages of small size,low integration costs,and self-locking,which shows great potential for application.However,the conventional single-channel microcavity thermal-locking method that relies solely on internal thermal balance will inevitably be disturbed by the external environment.This limitation affects the locking time and stability.Therefore,in this paper,we propose a new method for closed-loop thermal locking of a dual-channel microcavity.The thermal locking of the signal laser and the thermal regulation of the control laser are carried out respectively by synchronously drawing a dual-path tapered fiber.The theoretical model of the thermal dynamics of the dual-channel microcavity system is established,and the influence of the control-laser power on the thermal locking of the signal laser is confirmed.The deviation between the locking voltage of the signal laser and the set point value is used as a closed-loop feedback parameter to achieve long-term and highly stable mode locking of the signal laser.The results show that in the 2.63 h thermal-locking test,the locking stability is an order of magnitude higher than that of the single tapered fiber.This solution addresses the issue of thermal locking being disrupted by the external environment,and offers new possibilities for important applications such as spectroscopy and micro-optical sensor devices.展开更多
We present a laser frequency locking to Rydberg transition with electromagnetically induced transparency(EIT)spectra in a room-temperature cesium vapor cell. Cesium levels 6S_(1/2), 6P_(3/2), and the n D_(5/2)...We present a laser frequency locking to Rydberg transition with electromagnetically induced transparency(EIT)spectra in a room-temperature cesium vapor cell. Cesium levels 6S_(1/2), 6P_(3/2), and the n D_(5/2) state, compose a cascade three-level system, where a coupling laser drives Rydberg transition, and probe laser detects the EIT signal. The error signal, obtained by demodulating the EIT signal, is used to lock the coupling laser frequency to Rydberg transition. The laser frequency fluctuation, ~0.7 MHz, is obtained after locking on, with the minimum Allan variance to be 8.9 × 10^(-11).This kind of locking method can be used to stabilize the laser frequency to the excited transition.展开更多
The transition state between the continuous wave region and the mode-locked region in a passively mode-locked erbium-doped fibre ring laser has been experimentally observed by utilizing the nonlinear polarization rota...The transition state between the continuous wave region and the mode-locked region in a passively mode-locked erbium-doped fibre ring laser has been experimentally observed by utilizing the nonlinear polarization rotation technique. When the pump power reaches the mode-locked threshold, the metastable pulse train with a tunable repetition rate is obtained in the transition from the continuous wave state to the passive mode-locked state via proper adjustment of the polarization controller. A simpie model has been established to explain the experimental observation.展开更多
Coherent beam combining(CBC)is an efficient way to scale the brightness of laser arrays.We demonstrate the active phase locking CBC of two slab laser amplifiers based on the multi-dithering technique.The experimental ...Coherent beam combining(CBC)is an efficient way to scale the brightness of laser arrays.We demonstrate the active phase locking CBC of two slab laser amplifiers based on the multi-dithering technique.The experimental investigation on the 102 W coherent beam combining of two slab amplifiers shows that the whole system in a closed loop performs well over a long time observation.The contrast of the coherent combined beam profile is about 87%and the combining efficiency is nearly 85%.In addition,the CBC of two green lasers is realized based on the second-harmonic generation of the phase locking pump lasers.To the best of our knowledge,this is the first report about second-harmonic active phase locking,which indicates further potential applications of CBC.展开更多
The locking of tearing modes by the error field is studied by nonlinear numerical modeling.The threshold of mode locking for J-TEXT tokamak plasmas is found.
We study a new class of elliptic variational-hemivariational inequalities arising in the modelling of contact problems for elastic ideally locking materials. The contact is described by the Signorini unilateral contac...We study a new class of elliptic variational-hemivariational inequalities arising in the modelling of contact problems for elastic ideally locking materials. The contact is described by the Signorini unilateral contact condition and the friction is modelled by the nonmonotone multivalued subdifferential condition which depends on the slip. The problem is governed by a nonlinear elasticity operator, the subdifferential of the indicator function of a convex set which describes the locking constraints and a nonconvex locally Lipschitz friction potential. The result on existence and uniqueness of solution to the inequality is shown. The proof is based on a surjectivity result for maximal monotone and pseudomonotone operators combined with the application of the Banach contraction principle.展开更多
In this paper,the frequency-locking and threshold current-lowering effects of a quantum cascade laser are studied and achieved.Combined with cavity-enhanced absorption spectroscopy,the noninvasive detection of H_2 wit...In this paper,the frequency-locking and threshold current-lowering effects of a quantum cascade laser are studied and achieved.Combined with cavity-enhanced absorption spectroscopy,the noninvasive detection of H_2 with a prepared concentration of 500 ppm in multiple dissolved gases is performed and evaluated.The high frequency selectivity of 0.0051 cm^-1 at an acquisition time of 1 s allows the sensitive detection of the(1-0) S(l) band of H_2 with a high accuracy of(96.53±0.29)%and shows that the detection limit to an absorption line of 4712.9046 cm^-1 is approximately(17.26±0.63) ppm at an atmospheric pressure and a temperature of 20 ℃.展开更多
Recently, spin-momentum-locked topological surface states(SSs) have attracted significant attention in spintronics.Owing to spin-momentum locking, the direction of the spin is locked at right angles with respect to ...Recently, spin-momentum-locked topological surface states(SSs) have attracted significant attention in spintronics.Owing to spin-momentum locking, the direction of the spin is locked at right angles with respect to the carrier momentum.In this paper, we briefly review the exotic transport properties induced by topological SSs in topological-insulator(TI)nanostructures, which have larger surface-to-volume ratios than those of bulk TI materials. We discuss the electrical spin generation in TIs and its effect on the transport properties. A current flow can generate a pure in-plane spin polarization on the surface, leading to a current-direction-dependent magnetoresistance in spin valve devices based on TI nanostructures.A relative momentum shift of two coupled topological SSs also generates net spin polarization and induces an in-plane anisotropic negative magnetoresistance. Therefore, the spin-momentum locking can enable the broad tuning of the spin transport properties of topological devices for spintronic applications.展开更多
We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a...We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a wide-band single-path PLL and a narrow-band dual-path PLL in a transient state and a steady state, respectively, by changing the loop bandwidth according to the gain of voltage controlled oscillator (VCO) and the resister of the loop filter. The hybrid PLL is implemented in a 0.18-μm complementary metal oxide semiconductor (CMOS) process with a total die area of 1.4×0.46 mm2. The measured results exhibit a reference spur level of lower than -73 dB with a reference frequency of 10 MHz and a settling time of 20 μs with 40 MHz frequency jump at 2 GHz. The total power consumption of the hybrid PLL is less than 27 mW with a supply voltage of 1.8 V.展开更多
We theoretically investigate the application of the fringe-locking method(FLM) in the dual-species quantum test of the weak equivalence principle(WEP).With the FLM,the measurement is performed invariably at the mi...We theoretically investigate the application of the fringe-locking method(FLM) in the dual-species quantum test of the weak equivalence principle(WEP).With the FLM,the measurement is performed invariably at the midfringe,and the extraction of the phase shift for atom interferometers is linearized.For the simultaneous interferometers,this linearization enables a good common-mode rejection of vibration noise,which is usually the main limit for high precision WEP tests of the dual-species kind.We note that this method also allows for an unbiased determination of the gravity accelerations difference,which meanwhile is ready to be implemented.展开更多
Graphic processing units (GPUs) have been widely recognized as cost-efficient co-processors with acceptable size, weight, and power consumption. However, adopting GPUs in real-time systems is still challenging, due ...Graphic processing units (GPUs) have been widely recognized as cost-efficient co-processors with acceptable size, weight, and power consumption. However, adopting GPUs in real-time systems is still challenging, due to the lack in framework for real-time analysis. In order to guarantee real-time requirements while maintaining system utilization ~in modern heterogeneous systems, such as multicore multi-GPU systems, a novel suspension-based k-exclusion real-time locking protocol and the associated suspension-aware schedulability analysis are proposed. The proposed protocol provides a synchronization framework that enables multiple GPUs to be efficiently integrated in multicore real-time systems. Comparative evaluations show that the proposed methods improve upon the existing work in terms of schedulability.展开更多
The main aim of this article is to study the approximation of a locking-free anisotropic nonconforming finite element for the pure displacement boundary value problem of planar linear elasticity. The optimal error est...The main aim of this article is to study the approximation of a locking-free anisotropic nonconforming finite element for the pure displacement boundary value problem of planar linear elasticity. The optimal error estimates are obtained by using some novel approaches and techniques. The method proposed in this article is robust in the sense that the convergence estimates in the energy and L^2-norms are independent-of the Lame parameter λ.展开更多
The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations.The beat-note signals can be effectively transformed to optical frequency combs due to the effective f...The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations.The beat-note signals can be effectively transformed to optical frequency combs due to the effective four wave-mixing in the active semiconductor gain medium. The low-noise Gaussian-like pulse can be obtained by locking the relaxation oscillation and compensating the gain asymmetry. The simulations suggest that pulse trains of width below 30 ps and repetition rate in GHz frequency can be generated simply by the optical injection locking of semiconductor lasers. Since the optical injection locking can broaden the spectrum and amplify the optical power simultaneously, it can be a good initial stage for generating optical frequency combs from dual-frequency lasers by multi-stage of spectral broadening in nonlinear waveguides.展开更多
We have developed two 474 THz(633 nm)new iodine stabilized He-Ne lasers with compatible system of third and fifth harmonic locking.The frequency stability is 1.0×10-11/ 1s and 3.5×10-12 / 10s with third harm...We have developed two 474 THz(633 nm)new iodine stabilized He-Ne lasers with compatible system of third and fifth harmonic locking.The frequency stability is 1.0×10-11/ 1s and 3.5×10-12 / 10s with third harmonic locking,and corresponding values are 1.3×10-11/1s and 4.0×10-12/ 10s with fifth harmonic locking.We found that the frequency difference between the same component with third and fifth harmonic locking are from 5 kHz to SO kHz.Our experiment and analysis indicate that the center of fifth harmonic signals is closer to the Lorentzian center in iodine absorption component than one of the third harmonic signals,and the reproducibility with fifth harmonic locking is also better than one with third harmonic locking.展开更多
Valleytronics is an emerging field of research which utilizes the valley degree of freedom to encode information.However,it is technically nontrivial to produce a stable valley polarization and to achieve efficient co...Valleytronics is an emerging field of research which utilizes the valley degree of freedom to encode information.However,it is technically nontrivial to produce a stable valley polarization and to achieve efficient control and manipulation of valleys.Spin–valley locking refers to the coupling between spin and valley degrees of freedom in the materials with large spin–orbit coupling(SOC)and enables the manipulation of valleys indirectly through controlling spins.Here,we review the recent advances in spin–valley locking physics and outline possible device implications.In particular,we focus on the spin–valley locking induced by SOC and external electric field in certain two-dimensional materials with inversion symmetry and demonstrate the intriguing switchable valley–spin polarization,which can be utilized to design the promising electronic devices,namely,valley-spin valves and logic gates.展开更多
We present a compact injection-locking diode laser module to generate 671 nm laser light with a high output power up to 150 m W.The module adopts a master-slave injection-locking scheme,and the injection-locking state...We present a compact injection-locking diode laser module to generate 671 nm laser light with a high output power up to 150 m W.The module adopts a master-slave injection-locking scheme,and the injection-locking state is monitored using the transmission spectrum from a Fabry-Perot interferometer.Beat frequency spectrum measurement shows that the injection-locked slave laser has no other frequency components within the 150-MHz detection bandwidth.It is found that without additional electronic feedback,the slave laser can follow the master laser over a wide range of 6 GHz.All the elements of the module are commercially available,which favors fast construction of a complete 671-nm laser system for the preparation of cold^(6)Li atoms with only one research-grade diode laser as the seeding source.展开更多
We have experimentally offset-locked the frequencies of two lasers using electromagnetically induced transparency(EIT) spectroscopy of ^(85)Rb vapor with a buffer gas in a magnetic field at room temperature. The m...We have experimentally offset-locked the frequencies of two lasers using electromagnetically induced transparency(EIT) spectroscopy of ^(85)Rb vapor with a buffer gas in a magnetic field at room temperature. The magnetic field is generated by a permanent magnet mounted on a translation stage and its field magnitude can be varied by adjusting the distance between the magnet and Rb cell, which maps the laser locking frequency to the space position of the magnet. This frequency-space mapping technique provides an unambiguous daily laser frequency detuning operation with high accuracy.A repeatability of less than 0.5 MHz is achieved with the locking frequency detuned up to 184 MHz when the magnetic field varies from 0 up to 80 G.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB3203400)the National Natural Science Foundation of China(Grant Nos.U21A20141,62273314,and 51821003)+1 种基金the Fundamental Research Program of Shanxi Province(Grant No.202303021223001)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement(Grant No.201905D121001)。
文摘Mode locking can be effectively achieved by using the thermo-optic effects in the whispering gallery mode(WGM)optical microcavity,without the help of external equipment.Therefore,it has the advantages of small size,low integration costs,and self-locking,which shows great potential for application.However,the conventional single-channel microcavity thermal-locking method that relies solely on internal thermal balance will inevitably be disturbed by the external environment.This limitation affects the locking time and stability.Therefore,in this paper,we propose a new method for closed-loop thermal locking of a dual-channel microcavity.The thermal locking of the signal laser and the thermal regulation of the control laser are carried out respectively by synchronously drawing a dual-path tapered fiber.The theoretical model of the thermal dynamics of the dual-channel microcavity system is established,and the influence of the control-laser power on the thermal locking of the signal laser is confirmed.The deviation between the locking voltage of the signal laser and the set point value is used as a closed-loop feedback parameter to achieve long-term and highly stable mode locking of the signal laser.The results show that in the 2.63 h thermal-locking test,the locking stability is an order of magnitude higher than that of the single tapered fiber.This solution addresses the issue of thermal locking being disrupted by the external environment,and offers new possibilities for important applications such as spectroscopy and micro-optical sensor devices.
基金The Natural Science Foundation of the Education Department of Henan Province (2009A1100032010A110005)+1 种基金the International Science and Technology Cooperation Project of Henan Provincethe Foundation of Henan University of Technology
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921603)the National Natural Science Foundation of China(Grants Nos.11274209,61475090,61378039,and 61378013)the Research Project Supported by Shanxi Scholarship Council of China(Grant No.2014-009)
文摘We present a laser frequency locking to Rydberg transition with electromagnetically induced transparency(EIT)spectra in a room-temperature cesium vapor cell. Cesium levels 6S_(1/2), 6P_(3/2), and the n D_(5/2) state, compose a cascade three-level system, where a coupling laser drives Rydberg transition, and probe laser detects the EIT signal. The error signal, obtained by demodulating the EIT signal, is used to lock the coupling laser frequency to Rydberg transition. The laser frequency fluctuation, ~0.7 MHz, is obtained after locking on, with the minimum Allan variance to be 8.9 × 10^(-11).This kind of locking method can be used to stabilize the laser frequency to the excited transition.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074078)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20094407110002)+1 种基金the Key Program for Scientific and Technological Innovations of Higher Education Institutes in Guangdong Province,China(Grant No.cxzd1011)the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(Grant No.C10183)
文摘The transition state between the continuous wave region and the mode-locked region in a passively mode-locked erbium-doped fibre ring laser has been experimentally observed by utilizing the nonlinear polarization rotation technique. When the pump power reaches the mode-locked threshold, the metastable pulse train with a tunable repetition rate is obtained in the transition from the continuous wave state to the passive mode-locked state via proper adjustment of the polarization controller. A simpie model has been established to explain the experimental observation.
基金by the Innovation Foundation for Graduates in National University of Defense Technology under Grant B090704the Hunan Provincial Innovation Foundation For Postgraduate(No CX2009B006).
文摘Coherent beam combining(CBC)is an efficient way to scale the brightness of laser arrays.We demonstrate the active phase locking CBC of two slab laser amplifiers based on the multi-dithering technique.The experimental investigation on the 102 W coherent beam combining of two slab amplifiers shows that the whole system in a closed loop performs well over a long time observation.The contrast of the coherent combined beam profile is about 87%and the combining efficiency is nearly 85%.In addition,the CBC of two green lasers is realized based on the second-harmonic generation of the phase locking pump lasers.To the best of our knowledge,this is the first report about second-harmonic active phase locking,which indicates further potential applications of CBC.
基金by the National Natural Science Foundation of China under Grant No 10805022the ITER Special Foundation(2009GB105003,2010GB108004)the National Basic Research Program of China under Grant No 2008CB717805.
文摘The locking of tearing modes by the error field is studied by nonlinear numerical modeling.The threshold of mode locking for J-TEXT tokamak plasmas is found.
基金supported by the National Science Center of Poland under the Maestro 3 Project No.DEC-2012/06/A/ST1/00262the project Polonium“Mathematical and Numerical Analysis for Contact Problems with Friction”2014/15 between the Jagiellonian University and Universitde Perpignan Via Domitia
文摘We study a new class of elliptic variational-hemivariational inequalities arising in the modelling of contact problems for elastic ideally locking materials. The contact is described by the Signorini unilateral contact condition and the friction is modelled by the nonmonotone multivalued subdifferential condition which depends on the slip. The problem is governed by a nonlinear elasticity operator, the subdifferential of the indicator function of a convex set which describes the locking constraints and a nonconvex locally Lipschitz friction potential. The result on existence and uniqueness of solution to the inequality is shown. The proof is based on a surjectivity result for maximal monotone and pseudomonotone operators combined with the application of the Banach contraction principle.
基金supported by the Special Funds for the Development of National Major Scientific Instruments and Equipment,China(Grant No.2012YQ160007)the National Natural Science Foundation of China(Grant No.51277185)
文摘In this paper,the frequency-locking and threshold current-lowering effects of a quantum cascade laser are studied and achieved.Combined with cavity-enhanced absorption spectroscopy,the noninvasive detection of H_2 with a prepared concentration of 500 ppm in multiple dissolved gases is performed and evaluated.The high frequency selectivity of 0.0051 cm^-1 at an acquisition time of 1 s allows the sensitive detection of the(1-0) S(l) band of H_2 with a high accuracy of(96.53±0.29)%and shows that the detection limit to an absorption line of 4712.9046 cm^-1 is approximately(17.26±0.63) ppm at an atmospheric pressure and a temperature of 20 ℃.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2014CB921103 and 2017YFA0206304)the National Natural Science Foundation of China(Grant Nos.61822403,11874203,U1732159,and U1732273)+1 种基金Fundamental Research Funds for the Central Universities,China(Grant No.021014380080)Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics,China
文摘Recently, spin-momentum-locked topological surface states(SSs) have attracted significant attention in spintronics.Owing to spin-momentum locking, the direction of the spin is locked at right angles with respect to the carrier momentum.In this paper, we briefly review the exotic transport properties induced by topological SSs in topological-insulator(TI)nanostructures, which have larger surface-to-volume ratios than those of bulk TI materials. We discuss the electrical spin generation in TIs and its effect on the transport properties. A current flow can generate a pure in-plane spin polarization on the surface, leading to a current-direction-dependent magnetoresistance in spin valve devices based on TI nanostructures.A relative momentum shift of two coupled topological SSs also generates net spin polarization and induces an in-plane anisotropic negative magnetoresistance. Therefore, the spin-momentum locking can enable the broad tuning of the spin transport properties of topological devices for spintronic applications.
基金supported by the National Natural Science Foundation of China(Grant No.61307128)the National Basic Research Program of China(GrantNo.2010CB327505)+1 种基金the Specialized Research Found for the Doctoral Program of Higher Education of China(Grant No.20131101120027)the Basic Research Foundation of Beijing Institute of Technology of China(Grant No.20120542015)
文摘We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a wide-band single-path PLL and a narrow-band dual-path PLL in a transient state and a steady state, respectively, by changing the loop bandwidth according to the gain of voltage controlled oscillator (VCO) and the resister of the loop filter. The hybrid PLL is implemented in a 0.18-μm complementary metal oxide semiconductor (CMOS) process with a total die area of 1.4×0.46 mm2. The measured results exhibit a reference spur level of lower than -73 dB with a reference frequency of 10 MHz and a settling time of 20 μs with 40 MHz frequency jump at 2 GHz. The total power consumption of the hybrid PLL is less than 27 mW with a supply voltage of 1.8 V.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41127002,11574099,and 11474115)the National Basic Research Program of China(Grant No.2010CB832806)
文摘We theoretically investigate the application of the fringe-locking method(FLM) in the dual-species quantum test of the weak equivalence principle(WEP).With the FLM,the measurement is performed invariably at the midfringe,and the extraction of the phase shift for atom interferometers is linearized.For the simultaneous interferometers,this linearization enables a good common-mode rejection of vibration noise,which is usually the main limit for high precision WEP tests of the dual-species kind.We note that this method also allows for an unbiased determination of the gravity accelerations difference,which meanwhile is ready to be implemented.
基金supported by the National Natural Science Foundation of China under Grant No.61003032/F020207
文摘Graphic processing units (GPUs) have been widely recognized as cost-efficient co-processors with acceptable size, weight, and power consumption. However, adopting GPUs in real-time systems is still challenging, due to the lack in framework for real-time analysis. In order to guarantee real-time requirements while maintaining system utilization ~in modern heterogeneous systems, such as multicore multi-GPU systems, a novel suspension-based k-exclusion real-time locking protocol and the associated suspension-aware schedulability analysis are proposed. The proposed protocol provides a synchronization framework that enables multiple GPUs to be efficiently integrated in multicore real-time systems. Comparative evaluations show that the proposed methods improve upon the existing work in terms of schedulability.
基金The research is supported by NSF of China (10371113 10471133)
文摘The main aim of this article is to study the approximation of a locking-free anisotropic nonconforming finite element for the pure displacement boundary value problem of planar linear elasticity. The optimal error estimates are obtained by using some novel approaches and techniques. The method proposed in this article is robust in the sense that the convergence estimates in the energy and L^2-norms are independent-of the Lame parameter λ.
基金Project supported by the National Natural Science Foundation of China(Grant No.62005215)。
文摘The optical injection locking of semiconductor lasers to dual-frequency lasers is studied by numerical simulations.The beat-note signals can be effectively transformed to optical frequency combs due to the effective four wave-mixing in the active semiconductor gain medium. The low-noise Gaussian-like pulse can be obtained by locking the relaxation oscillation and compensating the gain asymmetry. The simulations suggest that pulse trains of width below 30 ps and repetition rate in GHz frequency can be generated simply by the optical injection locking of semiconductor lasers. Since the optical injection locking can broaden the spectrum and amplify the optical power simultaneously, it can be a good initial stage for generating optical frequency combs from dual-frequency lasers by multi-stage of spectral broadening in nonlinear waveguides.
基金The project is supported by Naural Science Foundation Committee of China
文摘We have developed two 474 THz(633 nm)new iodine stabilized He-Ne lasers with compatible system of third and fifth harmonic locking.The frequency stability is 1.0×10-11/ 1s and 3.5×10-12 / 10s with third harmonic locking,and corresponding values are 1.3×10-11/1s and 4.0×10-12/ 10s with fifth harmonic locking.We found that the frequency difference between the same component with third and fifth harmonic locking are from 5 kHz to SO kHz.Our experiment and analysis indicate that the center of fifth harmonic signals is closer to the Lorentzian center in iodine absorption component than one of the third harmonic signals,and the reproducibility with fifth harmonic locking is also better than one with third harmonic locking.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.FRFCU5710053421)the National Natural Science Foundation of China(Grant No.12274102)。
文摘Valleytronics is an emerging field of research which utilizes the valley degree of freedom to encode information.However,it is technically nontrivial to produce a stable valley polarization and to achieve efficient control and manipulation of valleys.Spin–valley locking refers to the coupling between spin and valley degrees of freedom in the materials with large spin–orbit coupling(SOC)and enables the manipulation of valleys indirectly through controlling spins.Here,we review the recent advances in spin–valley locking physics and outline possible device implications.In particular,we focus on the spin–valley locking induced by SOC and external electric field in certain two-dimensional materials with inversion symmetry and demonstrate the intriguing switchable valley–spin polarization,which can be utilized to design the promising electronic devices,namely,valley-spin valves and logic gates.
基金the National Natural Science Foundation of China(Grant Nos.12035006,12205095,and12147219)the Natural Science Foundation of Zhejiang Province(Grant No.LQ21A040001)。
文摘We present a compact injection-locking diode laser module to generate 671 nm laser light with a high output power up to 150 m W.The module adopts a master-slave injection-locking scheme,and the injection-locking state is monitored using the transmission spectrum from a Fabry-Perot interferometer.Beat frequency spectrum measurement shows that the injection-locked slave laser has no other frequency components within the 150-MHz detection bandwidth.It is found that without additional electronic feedback,the slave laser can follow the master laser over a wide range of 6 GHz.All the elements of the module are commercially available,which favors fast construction of a complete 671-nm laser system for the preparation of cold^(6)Li atoms with only one research-grade diode laser as the seeding source.
基金Project supported by the National Key Basic Research Program of China(Grant No.2013CB922003)the National Natural Science Foundation of China(Grant Nos.91421305,91121005,and 11174329)
文摘We have experimentally offset-locked the frequencies of two lasers using electromagnetically induced transparency(EIT) spectroscopy of ^(85)Rb vapor with a buffer gas in a magnetic field at room temperature. The magnetic field is generated by a permanent magnet mounted on a translation stage and its field magnitude can be varied by adjusting the distance between the magnet and Rb cell, which maps the laser locking frequency to the space position of the magnet. This frequency-space mapping technique provides an unambiguous daily laser frequency detuning operation with high accuracy.A repeatability of less than 0.5 MHz is achieved with the locking frequency detuned up to 184 MHz when the magnetic field varies from 0 up to 80 G.