Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-no...Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.展开更多
A new tracking algorithm is proposed aiming at the tracking problem in low bit signal-to- noise ratio (i. e. , Eb/N0 ) scenarios, in which the bit clock regenerated by bit synchronization loop decides loop update mo...A new tracking algorithm is proposed aiming at the tracking problem in low bit signal-to- noise ratio (i. e. , Eb/N0 ) scenarios, in which the bit clock regenerated by bit synchronization loop decides loop update moment. The double frequency processing and non-coherent accumulation tech- nologies are applied to eliminate the impact of data polarity inversion, and then long time accumula- tion improves the input signal-to-noise ratio of discriminator. The frequency locked loop and phase locked loop constitute a carrier loop in parallel, which can meet the high dynamic demands. The ef- fectiveness of this algorithm has been corroborated by theoretical analysis, simulation and measure- ments, and the new tracking algorithm has been used in an aerospace engineering project successfully.展开更多
A novel frame shift and integral technique for the enhancement of low light level moving image sequence is introduced. According to the technique, motion parameters of target are measured by algorithm based on differe...A novel frame shift and integral technique for the enhancement of low light level moving image sequence is introduced. According to the technique, motion parameters of target are measured by algorithm based on difference processing. To obtain spatial relativity, images are shifted according to the motion parameters. As a result, the processing of integral and average can be applied to images that have been shifted. The technique of frame shift and integral that includes the algorithm of motion parameter determination is discussed, experiments with low light level moving image sequences are also described. The experiment results show the effectiveness and the robustness of the parameter determination algorithm, and the improvement in the signal-to-noise ratio (SNR) of low light level moving images.展开更多
基金the National Natural Science Foundation of China(Grant Nos.61973037 and 61673066).
文摘Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA1569)
文摘A new tracking algorithm is proposed aiming at the tracking problem in low bit signal-to- noise ratio (i. e. , Eb/N0 ) scenarios, in which the bit clock regenerated by bit synchronization loop decides loop update moment. The double frequency processing and non-coherent accumulation tech- nologies are applied to eliminate the impact of data polarity inversion, and then long time accumula- tion improves the input signal-to-noise ratio of discriminator. The frequency locked loop and phase locked loop constitute a carrier loop in parallel, which can meet the high dynamic demands. The ef- fectiveness of this algorithm has been corroborated by theoretical analysis, simulation and measure- ments, and the new tracking algorithm has been used in an aerospace engineering project successfully.
文摘A novel frame shift and integral technique for the enhancement of low light level moving image sequence is introduced. According to the technique, motion parameters of target are measured by algorithm based on difference processing. To obtain spatial relativity, images are shifted according to the motion parameters. As a result, the processing of integral and average can be applied to images that have been shifted. The technique of frame shift and integral that includes the algorithm of motion parameter determination is discussed, experiments with low light level moving image sequences are also described. The experiment results show the effectiveness and the robustness of the parameter determination algorithm, and the improvement in the signal-to-noise ratio (SNR) of low light level moving images.