在低光环境下,人脸图像增强是许多任务的重要恢复方法。然而,现有的低光环境下人脸超分辨率方法通常依赖于低光增强和超分算法的序列建模。遗憾的是,由于优化目标之间的差异,使用这种方法来增强人脸图像很容易导致伪影或噪声。为了应对...在低光环境下,人脸图像增强是许多任务的重要恢复方法。然而,现有的低光环境下人脸超分辨率方法通常依赖于低光增强和超分算法的序列建模。遗憾的是,由于优化目标之间的差异,使用这种方法来增强人脸图像很容易导致伪影或噪声。为了应对这一挑战,本文提出了一个端到端的低光人脸图像超分辨率网络(low-light face super resolution network,LFSRNet)。该网络由浅层特征提取、深层特征提取和特征过滤上采样3个模块组成。首先浅层特征模块将输入的低光、低分辨率人脸图像映射到特征空间。随后,深度特征提取模块对其进行亮度校正并细化结构。最后,特征过滤上采样模块处理提取到的特征并重建人脸图像。此外,为了更好地重建丢失的面部细节本文还设计了一个损失函数faceMaskLoss。大量实验证明了所提模型的有效性。展开更多
低分辨率激光图像重构存在色彩视觉效果不佳,结构相似度指数低等问题,因此,设计基于色彩视觉传达的低分辨率激光图像重建方法。引入色彩视觉传达技术,填充图像色彩。采用ANC滤波将幅度作为置信度,结合双边滤波器和幅度值域核函数,设计...低分辨率激光图像重构存在色彩视觉效果不佳,结构相似度指数低等问题,因此,设计基于色彩视觉传达的低分辨率激光图像重建方法。引入色彩视觉传达技术,填充图像色彩。采用ANC滤波将幅度作为置信度,结合双边滤波器和幅度值域核函数,设计自适应双边归一化卷积法,滤波处理图像。采用四通道卷积稀疏编码,重建低分辨率激光图像。结果表明,该方法重建图像的色彩视觉传达效果最佳,饱和度为97.2%,亮度、色相、色彩对比度和锐度分别提高7.0%、20°、3.0和0.05 Line Pairs/MM,并且视区平滑性到达0.96,结构相似度指数为0.97,该方法具备了更好的激光图像重建效果。展开更多
针对传统分割算法难以实现高分辨率多光谱图像分割的问题,本文提出一种利用高斯混合模型的多光谱图像模糊聚类分割算法。该算法采用高斯混合模型定义像素对类属的非相似性测度,由于该算法具有高精度拟合数据统计分布能力,故可以有效剔...针对传统分割算法难以实现高分辨率多光谱图像分割的问题,本文提出一种利用高斯混合模型的多光谱图像模糊聚类分割算法。该算法采用高斯混合模型定义像素对类属的非相似性测度,由于该算法具有高精度拟合数据统计分布能力,故可以有效剔除噪声对分割结果的影响。同时,引入隐马尔科夫随机场(Hidden Markov Random Field,HMRF)定义邻域作用的先验概率,并将其作为各高斯分量权值以及KL(Kullback-Leibler)信息中控制聚类尺度的参数,从而增强了算法对复杂场景遥感图像的鲁棒性,进一步提高了算法的分割精度。对模拟图像和高分辨多光谱图像分割结果进行了定性定量分析。实验结果表明:模拟图像的总精度达96.8%以上。这验证了本文算法在分割高分辨率多光谱图像时具有保留细节信息的能力,而且也证实了算法的有效性和可行性。该算法能够实现高分辨率多光谱图像的精确分割。展开更多
文摘在低光环境下,人脸图像增强是许多任务的重要恢复方法。然而,现有的低光环境下人脸超分辨率方法通常依赖于低光增强和超分算法的序列建模。遗憾的是,由于优化目标之间的差异,使用这种方法来增强人脸图像很容易导致伪影或噪声。为了应对这一挑战,本文提出了一个端到端的低光人脸图像超分辨率网络(low-light face super resolution network,LFSRNet)。该网络由浅层特征提取、深层特征提取和特征过滤上采样3个模块组成。首先浅层特征模块将输入的低光、低分辨率人脸图像映射到特征空间。随后,深度特征提取模块对其进行亮度校正并细化结构。最后,特征过滤上采样模块处理提取到的特征并重建人脸图像。此外,为了更好地重建丢失的面部细节本文还设计了一个损失函数faceMaskLoss。大量实验证明了所提模型的有效性。
文摘低分辨率激光图像重构存在色彩视觉效果不佳,结构相似度指数低等问题,因此,设计基于色彩视觉传达的低分辨率激光图像重建方法。引入色彩视觉传达技术,填充图像色彩。采用ANC滤波将幅度作为置信度,结合双边滤波器和幅度值域核函数,设计自适应双边归一化卷积法,滤波处理图像。采用四通道卷积稀疏编码,重建低分辨率激光图像。结果表明,该方法重建图像的色彩视觉传达效果最佳,饱和度为97.2%,亮度、色相、色彩对比度和锐度分别提高7.0%、20°、3.0和0.05 Line Pairs/MM,并且视区平滑性到达0.96,结构相似度指数为0.97,该方法具备了更好的激光图像重建效果。
文摘针对传统分割算法难以实现高分辨率多光谱图像分割的问题,本文提出一种利用高斯混合模型的多光谱图像模糊聚类分割算法。该算法采用高斯混合模型定义像素对类属的非相似性测度,由于该算法具有高精度拟合数据统计分布能力,故可以有效剔除噪声对分割结果的影响。同时,引入隐马尔科夫随机场(Hidden Markov Random Field,HMRF)定义邻域作用的先验概率,并将其作为各高斯分量权值以及KL(Kullback-Leibler)信息中控制聚类尺度的参数,从而增强了算法对复杂场景遥感图像的鲁棒性,进一步提高了算法的分割精度。对模拟图像和高分辨多光谱图像分割结果进行了定性定量分析。实验结果表明:模拟图像的总精度达96.8%以上。这验证了本文算法在分割高分辨率多光谱图像时具有保留细节信息的能力,而且也证实了算法的有效性和可行性。该算法能够实现高分辨率多光谱图像的精确分割。