该文提出一种基于非负张量分解的高光谱图像压缩算法。首先将高光谱图像的每个谱段进行2维离散5/3小波变换,消除高光谱图像的空间冗余。然后将所有谱段的每级小波变换的4个小波子带看作为4个张量。对每个小波子带张量采用改进HALS(Hi...该文提出一种基于非负张量分解的高光谱图像压缩算法。首先将高光谱图像的每个谱段进行2维离散5/3小波变换,消除高光谱图像的空间冗余。然后将所有谱段的每级小波变换的4个小波子带看作为4个张量。对每个小波子带张量采用改进HALS(Hierarchical Alternating Least Squares)算法进行非负分解,来消除光谱冗余和空间残余冗余,同时保护了光谱信息。最后,将分解的因子矩阵进行熵编码。实验结果表明,该文提出的压缩算法具有良好压缩性能,在压缩比32:1-4:1范围内,平均信噪比高于40dB,与传统高光谱图像压缩算法比较,平均峰值信噪比提高了1.499dB。有效地提高了高光谱图像压缩算法的压缩性能和保护了光谱信息。展开更多
文摘压缩是高光谱遥感(hyperspectral remote sensing)图像的一个重要研究领域.文中充分考虑了高光谱遥感图像的谱间相关性较强而空间相关性相对较弱的特点,采用了自适应波段选择降维方法与基于神经网络的矢量量化方法相结合的方法对高光谱遥感图像进行压缩.首先采用自适应波段选择(Adaptive band selection)的谱间压缩方法,通过自适应地选择信息量大并且与其他波段相关性小的波段来降低高光谱数据量.然后对降维后图像在空间进行小波变换并进行矢量量化,最后对量化后数据进行自适应算术编码.实验结果表明,谱间压缩能够保留信息丰富的波段,同时计算复杂度大大降低;基于神经网络的SOFM算法及其改进算法取得较好的空间压缩效果,实现了对高光谱遥感图像的有效压缩.
文摘该文提出一种基于非负张量分解的高光谱图像压缩算法。首先将高光谱图像的每个谱段进行2维离散5/3小波变换,消除高光谱图像的空间冗余。然后将所有谱段的每级小波变换的4个小波子带看作为4个张量。对每个小波子带张量采用改进HALS(Hierarchical Alternating Least Squares)算法进行非负分解,来消除光谱冗余和空间残余冗余,同时保护了光谱信息。最后,将分解的因子矩阵进行熵编码。实验结果表明,该文提出的压缩算法具有良好压缩性能,在压缩比32:1-4:1范围内,平均信噪比高于40dB,与传统高光谱图像压缩算法比较,平均峰值信噪比提高了1.499dB。有效地提高了高光谱图像压缩算法的压缩性能和保护了光谱信息。