Transverse mode-coupling instability(TMCI)is a dangerous transverse single-bunch instability that can lead to severe par-ticle loss.The mechanism of TMCI can be explained by the coupling of transverse coherent oscilla...Transverse mode-coupling instability(TMCI)is a dangerous transverse single-bunch instability that can lead to severe par-ticle loss.The mechanism of TMCI can be explained by the coupling of transverse coherent oscillation modes owing to the transverse short-range wakefield(i.e.,the transverse broadband impedance).Recent studies on future circular colliders,e.g.,FCC-ee,showed that the threshold of TMCI decreased significantly when both longitudinal and transverse impedances were included.We performed computations for the circular electron-positron collider(CEPC)and observed a similar phenom-enon.Systematic studies on the influence of longitudinal impedance on the TMCI threshold were conducted.We concluded that the imaginary part of the longitudinal impedance,which caused a reduction in the incoherent synchrotron tune,was the primary reason for the reduction in the TMCI threshold.Additionally,the real part of the longitudinal impedance assists in increasing the TMCI threshold.展开更多
The spin-1 Blume–Capel model with transverse and longitudinal external magnetic fields h, in addition to a longitudinal random crystal field D, is studied in the mean-field approximation. It is assumed that the cryst...The spin-1 Blume–Capel model with transverse and longitudinal external magnetic fields h, in addition to a longitudinal random crystal field D, is studied in the mean-field approximation. It is assumed that the crystal field is either turned on with probability p or turned off with probability 1 p on the sites of a square lattice. Phase diagrams are then calculated on the reduced temperature crystal field planes for given values of γ=Ω/J and p at zero h. Thus, the effect of changing γ and p are illustrated on the phase diagrams in great detail and interesting results are observed.展开更多
Four kinds of Au nanorods(NRs)with different aspect ratios are designed to adjust the relationship between resonance energy level of longitudinal(L)and transverse(T)modes.During the femto-second Z-scan experimen...Four kinds of Au nanorods(NRs)with different aspect ratios are designed to adjust the relationship between resonance energy level of longitudinal(L)and transverse(T)modes.During the femto-second Z-scan experiments,huge saturable absorption phenomena are observed while the energy level T is located between one to two times of the energylevel L.This means that the energy may transfer between longitudinal and transverse energylevels in the same and/or different Au NRs.It effectively depresses the production of revised saturated absorption and increases the saturable absorption efficiency.This method is significant for the preparation of high-efficiency saturable absorption devices.展开更多
Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relati...Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin's model, and at the fourth location, close to She–Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations.展开更多
The modulational instability for longitudinal and transverse gravitoelectromagnetic(GEM)perturbations is investigated on the basis of the self-generated gravitomagnetic field equations in a self-gravitating system.Ana...The modulational instability for longitudinal and transverse gravitoelectromagnetic(GEM)perturbations is investigated on the basis of the self-generated gravitomagnetic field equations in a self-gravitating system.Analytical results indicate that the instability may lead the initially uniformly distributed matter collapse into a small region where the density of matter and the quasi-static self-generated gravitomagnetic field are strongly enhanced.There will be a pancake-like structure because the characteristic scale of longitudinal perturbation is much larger than the transverse one.The anisotropic accumulation of matter and the generation of a gravitomagnetic field are in favor of the formation of a rotationally pancake-like structure.展开更多
We present a theoretical study of the medium modifications of the p_(T)balance (x_(J)) of dijets in Xe+Xe collisions at■.The initial production of dijets was carried out using the POWHEG+PYTHIA8 prescription,which ma...We present a theoretical study of the medium modifications of the p_(T)balance (x_(J)) of dijets in Xe+Xe collisions at■.The initial production of dijets was carried out using the POWHEG+PYTHIA8 prescription,which matches the next-toleading-order (NLO) QCD matrix elements with the parton shower (PS) effect.The SHELL model described the in-medium evolution of nucleus–nucleus collisions using a transport approach.The theoretical results of the dijet xJin the Xe+Xe collisions exhibit more imbalanced distributions than those in the p+p collisions,consistent with recently reported ATLAS data.By utilizing the Interleaved Flavor Neutralisation,an infrared-and-collinear-safe jet flavor algorithm,to identify the flavor of the reconstructed jets,we classify dijets processes into three categories:gluon–gluon (gg),quark–gluon (qg),and quark–quark (qq),and investigated the respective medium modification patterns and fraction changes of the gg,qg,and qq components of the dijet sample in Xe+Xe collisions.It is shown that the increased fraction of qg component at a small x_(J)contributes to the imbalance of the dijet;in particular,the q_(1)g_(2)(quark-jet-leading) dijets experience more significant asymmetric energy loss than the g_(1)q_(2)(gluon-jet-leading) dijets traversing the QGP.By comparing the■of inclusive,■ dijets in Xe+Xe collisions,we observe■.Moreover,ρ_(Xe),P_(b),the ratios of the nuclear modification factors of dijets in Xe+Xe to those in Pb+Pb,were calculated,which indicates that the yield suppression of dijets in Pb+Pb is more pronounced than that in Xe+Xe owing to the larger radius of the lead nucleus.展开更多
Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with th...Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with the isotropic background,while the explicit model for the cracked rock with the anisotropic background is rarely investigated in spite of such case being often encountered in the earth.Hence,we first studied dependences of the crack opening displacement tensors on the crack dip angle in the coordinate systems formed by symmetry planes of the crack and the background anisotropy,respectively,by forty groups of numerical experiments.Based on the conclusion from the experiments,the analytical solution was derived for the effective elastic properties of the rock with the inclined penny-shaped cracks in the transversely isotropic background.Further,we comprehensively analyzed,according to the developed model,effects of the crack dip angle,background anisotropy,filling fluid and crack density on the effective elastic properties of the cracked rock.The analysis results indicate that the dip angle and background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P-and SH-wave velocities,whereas they have relatively small effects on the SV-wave velocity anisotropy.Moreover,the filling fluid can increase the stiffness coefficients related to the compressional modulus by reducing crack compliance parameters,while its effects on shear coefficients depend on the crack dip angle.The increasing crack density reduces velocities of the dry rock,and decreasing rates of the velocities are affected by the crack dip angle.By comparing with exact numerical results and experimental data,it was demonstrated that the proposed model can achieve high-precision estimations of stiffness coefficients.Moreover,the assumption of the weakly anisotropic background results in the consistency between the proposed model and Hudson's published theory for the orthorhombic rock.展开更多
A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allow...A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.展开更多
Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by ...Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption.展开更多
Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the d...Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the detection of image currents induced on electrodes or narrow-band wake field induced by a beam passing through a cavity-type structure.However,these methods have limitations.The indirect measurement of multiple parameters is computationally complex,requiring external calibration to determine the system parameters in advance.Furthermore,the utilization of the beam signal information is incomplete.Hence,this study proposes a novel method for measuring the absolute electron beam transverse position.By utilizing the geometric relationship between the center position of the measured electron beam and multiple detection electrodes and by analyzing the differences in the arrival times of the beam signals detected by these electrodes,the absolute transverse position of the electron beam crossing the electrode plane can be calculated.This method features absolute position measurement,a position sensitivity coefficient independent of vacuum chamber apertures,and no requirement for a symmetrical detector electrode layout.The feasibility of this method is validated through numerical simulations and beam experiments.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
A linear ultrasonic motor using longitudinal vibration of bar with varying section is proposed. The lin- ear ultrasonic motor has two varying section bars connected by semi-circumferential structure. Elliptical trajec...A linear ultrasonic motor using longitudinal vibration of bar with varying section is proposed. The lin- ear ultrasonic motor has two varying section bars connected by semi-circumferential structure. Elliptical trajecto- ries of particles are formed on top of the semi-circumferential structure outer surface where a driving foot is locat- ed. And a mover is pushed to move linearly when the driving foot is pressed onto it. Finite element model of sta- tor is built and results of harmonic analysis verify its principle. Moreover, design requirements of the motor are analyzed through finite element analysis and the results of sensitive analysis provide an efficient way to design the type of linear ultrasonic motor. Prototype test shows that the motor can afford load of 10 N at the speed of 100 mm/s.展开更多
In order to enhance the accuracy and overcome the limitation of representing the vehicular velocity with non driving wheel speed signals, which is commonly used in researching on automotive dynamic control systems at...In order to enhance the accuracy and overcome the limitation of representing the vehicular velocity with non driving wheel speed signals, which is commonly used in researching on automotive dynamic control systems at present, the dynamic and kinematics models of running vehicles and wheels are established. The concept that expresses vehicle velocity using only the driving wheel speed information with adjustable weight factors is described and an algorithm is proposed. A Matlab program with the algorithm embedded is made to simulate the vehicle’s accelerating under different road conditions, and it’s simulation results coincide well with the experimental results, which demonstrates the validity of the algorithm.展开更多
The one-order phase of the echo changes if there is relative radial moving between the object and the radar, i.e. , the Doppler effect. The Doppler effect is widely used in radar signal processing. The transverse moti...The one-order phase of the echo changes if there is relative radial moving between the object and the radar, i.e. , the Doppler effect. The Doppler effect is widely used in radar signal processing. The transverse motion of the object cannot change the one-order phase of the echo, but the high-order phase. The high-order Doppler effect of the transverse moving target is presented and a new algorithm for obtaining the transverse velocity is given. The scalar velocity of a target moving steadily in any direction can be calculated with one-order and two-order items of the echo phase. The calculating method and simulating results are given. As the transverse speed is 900 km/h, the speed calculation error is less than 0. 06% if SNR of echo signal is higher than 0 dB.展开更多
Mathematical models of tire-longitudinal road adhesion for use in the study of road vehicle dynamics are set up so as to express the relations of longitudinal adhesion coefficients with the slip ratio. They perfect th...Mathematical models of tire-longitudinal road adhesion for use in the study of road vehicle dynamics are set up so as to express the relations of longitudinal adhesion coefficients with the slip ratio. They perfect the Pacejka's models in practical use by taking into account the influences of all essential parameters such as road surface condition. vehicle velocity. slip angle. vertical load and slip ratio on the longitudinal adhesion coefficients. The new models are more comprehensive more concise. simpler and more convenient in application in all kinds of simulations of car dynamics in various sorts of braking modes.展开更多
This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the s...This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the shear correction factors is presented. Several failure criteria are used to check the first ply failure and distinguish the laminate failure modes into fiber breakage or buckling, matrix cracking and delamination. After the failure is detected, the stiffness of the failed ply is modified according to the failure modes. The ultimate strength of the laminate is obtained by an iterative way. Several examples are given in the paper for stress analysis and progressive failure analysis of composite laminates.展开更多
This paper investigates the evolutionary change in the OF(OF) of hedges in different moves of EMRAs(EMRAs).Two corpora are established for longitudinal study,with Corpus A consisting of EMRAs from 1990-1994 and Corpus...This paper investigates the evolutionary change in the OF(OF) of hedges in different moves of EMRAs(EMRAs).Two corpora are established for longitudinal study,with Corpus A consisting of EMRAs from 1990-1994 and Corpus B from 2005-2009.Generally,no significant change has been found in overall use of hedges.However,apart from move 6,7 and 10,we have found some interesting changes in the other moves.On the one hand,the OF of hedges in move 1,move 3,move 4 and move 5 shows a significant increase.On the other hand,the OF of hedges in move 2,8,9 and move 11 show a significant decrease.展开更多
Whole trip longitudinal dynamics and energy analysis of heavy haul trains are required by operators and manufacturers to enable optimisation of train controls and rolling stock components. A new technology named train...Whole trip longitudinal dynamics and energy analysis of heavy haul trains are required by operators and manufacturers to enable optimisation of train controls and rolling stock components. A new technology named train dynamics and energy analyser/train simulator (TDEAS) has been developed by the State Key Laboratory of Traction Power in China to perform detailed whole trip longitudinal train dynamics and energy analyses. Facilitated by a controller user interface and a graphic user interface, the TDEAS can also be used as a train driving simulator. This paper elaborates the modelling of three primary parts in the TDEAS, namely wagon connection systems, air brake systems and train energy components. TDEAS uses advanced wedge-spring draft gear models that can simulate a wider spectrum of friction draft gear behaviour. An effective and efficient air brake model that can simulate air brake systems in various train configurations has been integrated. In addition, TDEAS simulates the train energy on the basis of a detailed longitudinal train dynamics simulation, which enables a further perspective of the train energy composition and the overall energy consumption. To demonstrate the validity of the TDEAS, a case study was carried out on a 120-km-long Chinese railway. The results show that the employment of electric locomotives with regenerative braking could bring considerable energy benefits. Nearly 40 % of the locomotive energy usage could be collected from the dynamic brake system. Most of tractive energy was dissipated by propulsion resistance that accounted for 42.48 % of the total energy. Only a small amount of tractive energy was dissipated by curving resistance, air brake and draft gear systems.展开更多
Longitudinal injection is a promising on-axis injection scheme for diffraction-limited storage rings. In the latest version of the Hefei advanced light source (HALS), both the dynamic aperture and momentum aperture ha...Longitudinal injection is a promising on-axis injection scheme for diffraction-limited storage rings. In the latest version of the Hefei advanced light source (HALS), both the dynamic aperture and momentum aperture have been optimized. A longitudinal injection scheme was investigated on the HALS using a doublefrequency radio frequency system. To evaluate the injection performance, various errors were considered. A series of tracking simulations were conducted, and the injection efficiency was obtained under different error levels.展开更多
Coal-rock as a typical sedimentary rock has obvious stratification,namely it has transversely isotropic feature.Meanwhile,deformation leads to coal-rock mass having the characteristics of different porous and crack st...Coal-rock as a typical sedimentary rock has obvious stratification,namely it has transversely isotropic feature.Meanwhile,deformation leads to coal-rock mass having the characteristics of different porous and crack structures as well as local anisotropy.Equivalent axial and circumferential strain' formulas of the pure coal-rock mass specimen with a single crack were derived through the establishment of equivalent mechanical model of standard cylindrical coal-rock specimen,and have been widely used to a variety of media combined different structures containing multiple cracks.The complete stress strain curve of a real coal-rock specimen was obtained by the CTC test.Additionally,according to the comparison with the theoretical value,the theoretical mechanical model could well explain the deformation characteristics of coal-rock mass and verify its validity.Further,following features were analyzed:strain normalized coefficient and elastic modulus(Poisson's ratio) in vertical and parallel direction to the stratification,stratification angle,porosity,pore radius,normal and tangential stiffness of crack,and the relationship of different crack width with different tangential stiffness of crack.Through the analysis above,it substantiate this claim that the theoretical model with better reliability reflects the transversely isotropic nature of the coal-rock and the local anisotropy caused by the porous and cracks.展开更多
基金the National Natural Science Foundation of China(No.12375149)the National Key R&D Program of China(No.2022YFA1603401)the Innovation Study of the IHEP.
文摘Transverse mode-coupling instability(TMCI)is a dangerous transverse single-bunch instability that can lead to severe par-ticle loss.The mechanism of TMCI can be explained by the coupling of transverse coherent oscillation modes owing to the transverse short-range wakefield(i.e.,the transverse broadband impedance).Recent studies on future circular colliders,e.g.,FCC-ee,showed that the threshold of TMCI decreased significantly when both longitudinal and transverse impedances were included.We performed computations for the circular electron-positron collider(CEPC)and observed a similar phenom-enon.Systematic studies on the influence of longitudinal impedance on the TMCI threshold were conducted.We concluded that the imaginary part of the longitudinal impedance,which caused a reduction in the incoherent synchrotron tune,was the primary reason for the reduction in the TMCI threshold.Additionally,the real part of the longitudinal impedance assists in increasing the TMCI threshold.
文摘The spin-1 Blume–Capel model with transverse and longitudinal external magnetic fields h, in addition to a longitudinal random crystal field D, is studied in the mean-field approximation. It is assumed that the crystal field is either turned on with probability p or turned off with probability 1 p on the sites of a square lattice. Phase diagrams are then calculated on the reduced temperature crystal field planes for given values of γ=Ω/J and p at zero h. Thus, the effect of changing γ and p are illustrated on the phase diagrams in great detail and interesting results are observed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404410 and 11504105the Hunan Provincial Natural Science Foundation under Grant No 2016JJ3140
文摘Four kinds of Au nanorods(NRs)with different aspect ratios are designed to adjust the relationship between resonance energy level of longitudinal(L)and transverse(T)modes.During the femto-second Z-scan experiments,huge saturable absorption phenomena are observed while the energy level T is located between one to two times of the energylevel L.This means that the energy may transfer between longitudinal and transverse energylevels in the same and/or different Au NRs.It effectively depresses the production of revised saturated absorption and increases the saturable absorption efficiency.This method is significant for the preparation of high-efficiency saturable absorption devices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11272196, 11002085, and 11032007) and the Key Project of Education Commission of Shanghai Municipal, China (Grant No. 11ZZ87).
文摘Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin's model, and at the fourth location, close to She–Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations.
基金Supported by the National Natural Science Foundation of China under Grant No.10974211the National Basic Research Program of China under Grant No.2011CB921504the Research Project of Shanghai Science and Technology Commission under Grant Nos.09DJ1400700 and 10DJ1400600.
文摘The modulational instability for longitudinal and transverse gravitoelectromagnetic(GEM)perturbations is investigated on the basis of the self-generated gravitomagnetic field equations in a self-gravitating system.Analytical results indicate that the instability may lead the initially uniformly distributed matter collapse into a small region where the density of matter and the quasi-static self-generated gravitomagnetic field are strongly enhanced.There will be a pancake-like structure because the characteristic scale of longitudinal perturbation is much larger than the transverse one.The anisotropic accumulation of matter and the generation of a gravitomagnetic field are in favor of the formation of a rotationally pancake-like structure.
基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)National Natural Science Foundation of China with Project(Nos.11935007,12035007,12247127,and 12247132)China Postdoctoral Science Foundation supports S.Wang under project No.2021M701279.
文摘We present a theoretical study of the medium modifications of the p_(T)balance (x_(J)) of dijets in Xe+Xe collisions at■.The initial production of dijets was carried out using the POWHEG+PYTHIA8 prescription,which matches the next-toleading-order (NLO) QCD matrix elements with the parton shower (PS) effect.The SHELL model described the in-medium evolution of nucleus–nucleus collisions using a transport approach.The theoretical results of the dijet xJin the Xe+Xe collisions exhibit more imbalanced distributions than those in the p+p collisions,consistent with recently reported ATLAS data.By utilizing the Interleaved Flavor Neutralisation,an infrared-and-collinear-safe jet flavor algorithm,to identify the flavor of the reconstructed jets,we classify dijets processes into three categories:gluon–gluon (gg),quark–gluon (qg),and quark–quark (qq),and investigated the respective medium modification patterns and fraction changes of the gg,qg,and qq components of the dijet sample in Xe+Xe collisions.It is shown that the increased fraction of qg component at a small x_(J)contributes to the imbalance of the dijet;in particular,the q_(1)g_(2)(quark-jet-leading) dijets experience more significant asymmetric energy loss than the g_(1)q_(2)(gluon-jet-leading) dijets traversing the QGP.By comparing the■of inclusive,■ dijets in Xe+Xe collisions,we observe■.Moreover,ρ_(Xe),P_(b),the ratios of the nuclear modification factors of dijets in Xe+Xe to those in Pb+Pb,were calculated,which indicates that the yield suppression of dijets in Pb+Pb is more pronounced than that in Xe+Xe owing to the larger radius of the lead nucleus.
基金We would like to acknowledge all the reviewers and editors and the sponsorship of National Natural Science Foundation of China(42030103)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(2021QNLM020001-6)the Laoshan National Laboratory of Science and Technology Foundation(LSKJ202203400).
文摘Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with the isotropic background,while the explicit model for the cracked rock with the anisotropic background is rarely investigated in spite of such case being often encountered in the earth.Hence,we first studied dependences of the crack opening displacement tensors on the crack dip angle in the coordinate systems formed by symmetry planes of the crack and the background anisotropy,respectively,by forty groups of numerical experiments.Based on the conclusion from the experiments,the analytical solution was derived for the effective elastic properties of the rock with the inclined penny-shaped cracks in the transversely isotropic background.Further,we comprehensively analyzed,according to the developed model,effects of the crack dip angle,background anisotropy,filling fluid and crack density on the effective elastic properties of the cracked rock.The analysis results indicate that the dip angle and background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P-and SH-wave velocities,whereas they have relatively small effects on the SV-wave velocity anisotropy.Moreover,the filling fluid can increase the stiffness coefficients related to the compressional modulus by reducing crack compliance parameters,while its effects on shear coefficients depend on the crack dip angle.The increasing crack density reduces velocities of the dry rock,and decreasing rates of the velocities are affected by the crack dip angle.By comparing with exact numerical results and experimental data,it was demonstrated that the proposed model can achieve high-precision estimations of stiffness coefficients.Moreover,the assumption of the weakly anisotropic background results in the consistency between the proposed model and Hudson's published theory for the orthorhombic rock.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975059 and 12005021)。
文摘A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.
基金funded in part by the Advanced Research Projects AgencyEnergy (ARPA-E), U.S. Department of Energy, under award number DE-AR0001471。
文摘Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption.
基金supported by the National Key R&D Program of China(No.2022YFA1602201)。
文摘Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the detection of image currents induced on electrodes or narrow-band wake field induced by a beam passing through a cavity-type structure.However,these methods have limitations.The indirect measurement of multiple parameters is computationally complex,requiring external calibration to determine the system parameters in advance.Furthermore,the utilization of the beam signal information is incomplete.Hence,this study proposes a novel method for measuring the absolute electron beam transverse position.By utilizing the geometric relationship between the center position of the measured electron beam and multiple detection electrodes and by analyzing the differences in the arrival times of the beam signals detected by these electrodes,the absolute transverse position of the electron beam crossing the electrode plane can be calculated.This method features absolute position measurement,a position sensitivity coefficient independent of vacuum chamber apertures,and no requirement for a symmetrical detector electrode layout.The feasibility of this method is validated through numerical simulations and beam experiments.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
基金Supported by the National Natural Science Foundation of China(50735002)~~
文摘A linear ultrasonic motor using longitudinal vibration of bar with varying section is proposed. The lin- ear ultrasonic motor has two varying section bars connected by semi-circumferential structure. Elliptical trajecto- ries of particles are formed on top of the semi-circumferential structure outer surface where a driving foot is locat- ed. And a mover is pushed to move linearly when the driving foot is pressed onto it. Finite element model of sta- tor is built and results of harmonic analysis verify its principle. Moreover, design requirements of the motor are analyzed through finite element analysis and the results of sensitive analysis provide an efficient way to design the type of linear ultrasonic motor. Prototype test shows that the motor can afford load of 10 N at the speed of 100 mm/s.
文摘In order to enhance the accuracy and overcome the limitation of representing the vehicular velocity with non driving wheel speed signals, which is commonly used in researching on automotive dynamic control systems at present, the dynamic and kinematics models of running vehicles and wheels are established. The concept that expresses vehicle velocity using only the driving wheel speed information with adjustable weight factors is described and an algorithm is proposed. A Matlab program with the algorithm embedded is made to simulate the vehicle’s accelerating under different road conditions, and it’s simulation results coincide well with the experimental results, which demonstrates the validity of the algorithm.
基金Supported by the State Key Laboratory of Millimeter Waves(K200819)~~
文摘The one-order phase of the echo changes if there is relative radial moving between the object and the radar, i.e. , the Doppler effect. The Doppler effect is widely used in radar signal processing. The transverse motion of the object cannot change the one-order phase of the echo, but the high-order phase. The high-order Doppler effect of the transverse moving target is presented and a new algorithm for obtaining the transverse velocity is given. The scalar velocity of a target moving steadily in any direction can be calculated with one-order and two-order items of the echo phase. The calculating method and simulating results are given. As the transverse speed is 900 km/h, the speed calculation error is less than 0. 06% if SNR of echo signal is higher than 0 dB.
文摘Mathematical models of tire-longitudinal road adhesion for use in the study of road vehicle dynamics are set up so as to express the relations of longitudinal adhesion coefficients with the slip ratio. They perfect the Pacejka's models in practical use by taking into account the influences of all essential parameters such as road surface condition. vehicle velocity. slip angle. vertical load and slip ratio on the longitudinal adhesion coefficients. The new models are more comprehensive more concise. simpler and more convenient in application in all kinds of simulations of car dynamics in various sorts of braking modes.
文摘This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the shear correction factors is presented. Several failure criteria are used to check the first ply failure and distinguish the laminate failure modes into fiber breakage or buckling, matrix cracking and delamination. After the failure is detected, the stiffness of the failed ply is modified according to the failure modes. The ultimate strength of the laminate is obtained by an iterative way. Several examples are given in the paper for stress analysis and progressive failure analysis of composite laminates.
文摘This paper investigates the evolutionary change in the OF(OF) of hedges in different moves of EMRAs(EMRAs).Two corpora are established for longitudinal study,with Corpus A consisting of EMRAs from 1990-1994 and Corpus B from 2005-2009.Generally,no significant change has been found in overall use of hedges.However,apart from move 6,7 and 10,we have found some interesting changes in the other moves.On the one hand,the OF of hedges in move 1,move 3,move 4 and move 5 shows a significant increase.On the other hand,the OF of hedges in move 2,8,9 and move 11 show a significant decrease.
文摘Whole trip longitudinal dynamics and energy analysis of heavy haul trains are required by operators and manufacturers to enable optimisation of train controls and rolling stock components. A new technology named train dynamics and energy analyser/train simulator (TDEAS) has been developed by the State Key Laboratory of Traction Power in China to perform detailed whole trip longitudinal train dynamics and energy analyses. Facilitated by a controller user interface and a graphic user interface, the TDEAS can also be used as a train driving simulator. This paper elaborates the modelling of three primary parts in the TDEAS, namely wagon connection systems, air brake systems and train energy components. TDEAS uses advanced wedge-spring draft gear models that can simulate a wider spectrum of friction draft gear behaviour. An effective and efficient air brake model that can simulate air brake systems in various train configurations has been integrated. In addition, TDEAS simulates the train energy on the basis of a detailed longitudinal train dynamics simulation, which enables a further perspective of the train energy composition and the overall energy consumption. To demonstrate the validity of the TDEAS, a case study was carried out on a 120-km-long Chinese railway. The results show that the employment of electric locomotives with regenerative braking could bring considerable energy benefits. Nearly 40 % of the locomotive energy usage could be collected from the dynamic brake system. Most of tractive energy was dissipated by propulsion resistance that accounted for 42.48 % of the total energy. Only a small amount of tractive energy was dissipated by curving resistance, air brake and draft gear systems.
基金supported by the National Key R&D Program of China(No.2016YFA0402002)
文摘Longitudinal injection is a promising on-axis injection scheme for diffraction-limited storage rings. In the latest version of the Hefei advanced light source (HALS), both the dynamic aperture and momentum aperture have been optimized. A longitudinal injection scheme was investigated on the HALS using a doublefrequency radio frequency system. To evaluate the injection performance, various errors were considered. A series of tracking simulations were conducted, and the injection efficiency was obtained under different error levels.
基金supported by the State Key Basic Research Project of China(No.2011CB201201)the National Natural Science Foundation of China(Nos.51134018 and 11172318)the Key Technologies R&D Program of China(No.2008BAB36B07)
文摘Coal-rock as a typical sedimentary rock has obvious stratification,namely it has transversely isotropic feature.Meanwhile,deformation leads to coal-rock mass having the characteristics of different porous and crack structures as well as local anisotropy.Equivalent axial and circumferential strain' formulas of the pure coal-rock mass specimen with a single crack were derived through the establishment of equivalent mechanical model of standard cylindrical coal-rock specimen,and have been widely used to a variety of media combined different structures containing multiple cracks.The complete stress strain curve of a real coal-rock specimen was obtained by the CTC test.Additionally,according to the comparison with the theoretical value,the theoretical mechanical model could well explain the deformation characteristics of coal-rock mass and verify its validity.Further,following features were analyzed:strain normalized coefficient and elastic modulus(Poisson's ratio) in vertical and parallel direction to the stratification,stratification angle,porosity,pore radius,normal and tangential stiffness of crack,and the relationship of different crack width with different tangential stiffness of crack.Through the analysis above,it substantiate this claim that the theoretical model with better reliability reflects the transversely isotropic nature of the coal-rock and the local anisotropy caused by the porous and cracks.