期刊文献+
共找到1,736篇文章
< 1 2 87 >
每页显示 20 50 100
Casing life prediction using Borda and support vector machine methods 被引量:4
1
作者 Xu Zhiqian Yan Xiangzhen Yang Xiujuan 《Petroleum Science》 SCIE CAS CSCD 2010年第3期416-421,共6页
Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts ... Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy. 展开更多
关键词 Support vector machine method Borda method life prediction model failure modes RISKFACTORS
在线阅读 下载PDF
Remaining Useful Life Prediction of Rolling Element Bearings Based on Different Degradation Stages and Particle Filter 被引量:1
2
作者 LI Qing MA Bo LIU Jiameng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第3期432-441,共10页
A method is proposed to improve the accuracy of remaining useful life prediction for rolling element bearings,based on a state space model(SSM)with different degradation stages and a particle filter.The model is impro... A method is proposed to improve the accuracy of remaining useful life prediction for rolling element bearings,based on a state space model(SSM)with different degradation stages and a particle filter.The model is improved by a method based on the Paris formula and the Foreman formula allowing the establishment of different degradation stages.The remaining useful life of rolling element bearings can be predicted by the adjusted model with inputs of physical data and operating status information.The late operating trend is predicted by the use of the particle filter algorithm.The rolling bearing full life experimental data validate the proposed method.Further,the prediction result is compared with the single SSM and the Gamma model,and the results indicate that the predicted accuracy of the proposed method is higher with better practicability. 展开更多
关键词 DIFFERENT life STAGES of state space model REMAINING useful life prediction of ROLLING element bearing particle filter
在线阅读 下载PDF
Mold Wear During Die Forging Based on Variance Analysis and Prediction of Die Life 被引量:4
3
作者 CAI Ligang LIU Haidong +2 位作者 PAN Junjie CHENG Qiang CHU Hongyan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第6期872-883,共12页
A process parameter optimization method for mold wear during die forging process is proposed and a mold life prediction method based on polynomial fitting is presented,by combining the variance analysis method in the ... A process parameter optimization method for mold wear during die forging process is proposed and a mold life prediction method based on polynomial fitting is presented,by combining the variance analysis method in the orthogonal test with the finite element simulation test in the forging process.The process parameters with the greatest influence on the mold wear during the die forging process and the optimal solution of the process parameters to minimize the wear depth of the mold are derived.The hot die forging process is taken as an example,and a mold wear correction model for hot forging processes is derived based on the Archard wear model.Finite element simulation analysis of die wear process in hot die forging based on deform software is performed to study the relationship between the wear depth of the mold working surface and the die forging process parameters during hot forging process.The optimized process parameters suitable for hot forging are derived by orthogonal experimental design and analysis of variance.The average wear amount of the mold during the die forging process is derived by calculating the wear depth of a plurality of key nodes on the mold surface.Mold life for the entire production process is predicted based on average mold wear depth and polynomial fitting. 展开更多
关键词 die forging process DEFORM analysis of variance mold wear die life prediction
在线阅读 下载PDF
Storage life prediction under pre-strained thermally-accelerated aging of HTPB coating using the change of crosslinking density 被引量:2
4
作者 Yong-qiang Du Jian Zheng Gui-bo Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1387-1394,共8页
In order to predict the storage life of a certain type of HTPB(hydroyl-terminated polybutadiene)coating at 25℃ and analyze the influence of pre-strain on the storage life,the accelerated aging tests of HTPB coating a... In order to predict the storage life of a certain type of HTPB(hydroyl-terminated polybutadiene)coating at 25℃ and analyze the influence of pre-strain on the storage life,the accelerated aging tests of HTPB coating at 40℃,50℃,60℃,70℃ with the pre-strain of 0%,3%,6%,9%,respectively were carried out.The variation regularity of the change of crosslinking density was analyzed and the aging model of HTPB coating under pre-strained thermally-accelerated aging was proposed.The storage life of HTPB coating at 25℃ was estimated by using the Berthelot equation as the end point of the aging life with a 30% decrease in maximum elongation.The results showed that the change of crosslinking density of HTPB coating increased with the increase of aging temperature and aging time,and decreased with the increase of pre-strain.Under 0% prestrain,the relationship between the change of crosslinking density of HTPB coating and the aging time can be described by the logarithmic model with the confidence probability greater than 99%.The stress relaxation phenomenon existed under 3%,6%and 9%pre-strained aging.The aging model considering chemical aging and pre-strain was established with the confidence probability greater than 90%.The storage life of HTPB coating was 15.2935 years at 25C under 0% prestrain,which was reduced by 13.9007%,75.6949% and 89.7859% under 3%,6% and 9% pre-strain,respectively.The existence of pre-strain has a serious impact on the storage life of HTPB coating,therefore,the pre-strain should be avoided as much as possible during the actual storage. 展开更多
关键词 HTPB coating Crosslinking density Aging model Storage life prediction Berthelot
在线阅读 下载PDF
Remaining Useful Life Prediction of Aeroengine Based on Principal Component Analysis and One-Dimensional Convolutional Neural Network 被引量:4
5
作者 LYU Defeng HU Yuwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期867-875,共9页
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based... In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness. 展开更多
关键词 AEROENGINE remaining useful life(RUL) principal component analysis(PCA) one-dimensional convolution neural network(1D-CNN) time series prediction state parameters
在线阅读 下载PDF
Machine learning techniques for prediction of capacitance and remaining useful life of supercapacitors: A comprehensive review 被引量:1
6
作者 Vaishali Sawant Rashmi Deshmukh Chetan Awati 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期438-451,I0011,共15页
Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power... Supercapacitors are appealing energy storage devices for their promising features like high power density,outstanding cycling stability,and a quick charge–discharge cycle.The exceptional life cycle and ultimate power capability of supercapacitors are needed in the transportation and renewable energy generation sectors.Hence,predicting the capacitance and lifecycle of supercapacitors is significant for selecting the suitable material and planning replacement intervals for supercapacitors.In addition,system failures can be better addressed by accurately forecasting the lifecycle of SCs.Recently,the use of machine learning for performance prediction of energy storage materials has drawn increasing attention from researchers globally because of its superiority in prediction accuracy,time efficiency,and costeffectiveness.This article presents a detailed review of the progress and advancement of ML techniques for the prediction of capacitance and remaining useful life(RUL)of supercapacitors.The review starts with an introduction to supercapacitor materials and ML applications in energy storage devices,followed by workflow for ML model building for supercapacitor materials.Then,the summary of machine learning applications for the prediction of capacitance and RUL of different supercapacitor materials including EDLCs(carbon based materials),pesudocapacitive(oxides and composites)and hybrid materials is presented.Finally,the general perspective for future directions is also presented. 展开更多
关键词 SUPERCAPACITORS Energy storage materials Artificial neural network Machine learning Capacitance prediction Remaining useful life
在线阅读 下载PDF
Vibration Fatigue Probabilistic Life Prediction Model and Method for Blade 被引量:1
7
作者 Lou Guokang Wen Weidong +1 位作者 Wu Fuxian Zhang Hongjian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第3期494-506,共13页
Vibration fatigue is one of the main failure modes of blade.The vibration fatigue life of blade is scattered caused by manufacture error,material property dispersion and external excitation randomness.A new vibration ... Vibration fatigue is one of the main failure modes of blade.The vibration fatigue life of blade is scattered caused by manufacture error,material property dispersion and external excitation randomness.A new vibration fatigue probabilistic life prediction model(VFPLPM)and a prediction method are proposed in this paper.Firstly,as one-dimensional volumetric method(ODVM)only considers the principle calculation direction,a three-dimensional space vector volumetric method(TSVVM)is proposed to improve fatigue life prediction accuracy for actual threedimensional engineering structure.Secondly,based on the two volumetric methods(ODVM and TSVVM),the material C-P-S-N fatigue curve model(CFCM)and the maximum entropy quantile function model(MEQFM),VFPLPM is established to predict the vibration fatigue probabilistic life of blade.The VFPLPM is combined with maximum stress method(MSM),ODVM and TSVVM to estimate vibration fatigue probabilistic life of blade simulator by finite element simulation,and is verified by vibration fatigue test.The results show that all of the three methods can predict the vibration fatigue probabilistic life of blade simulator well.VFPLPM &TSVVM method has the highest computational accuracy for considering stress gradient effect not only in the principle calculation direction but also in other space vector directions. 展开更多
关键词 vibration fatigue probabilistic life prediction C-P-S-N fatigue curve volumetric method maximum entropy quantile function
在线阅读 下载PDF
High cycle fatigue life prediction method for tail gearbox casing of a helicopter transmission system
8
作者 刘星 chen ya-nong +1 位作者 ning xiang-rong xie jun-ling 《Journal of Chongqing University》 CAS 2017年第2期72-78,共7页
A method and procedure of high cycle fatigue life prediction for helicopter transmission system tail gearbox casing is presented, including fatigue test load, three parameters S-N curve, reduction factor and cumulativ... A method and procedure of high cycle fatigue life prediction for helicopter transmission system tail gearbox casing is presented, including fatigue test load, three parameters S-N curve, reduction factor and cumulative damage law. According to the fatigue test results, the design load spectrum and the three parameters S-N curve, a fatigue life prediction of the tail gearbox casing of a helicopter is performed as an example. 展开更多
关键词 tail gearbox casing high cycle fatigue life prediction fatigue test
在线阅读 下载PDF
Fatigue Analysis and Life Prediction of Dumpers with Cumulative Fatigue Damage Approach
9
作者 LI Shouju LIU Yingxi SUN Huiling 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第z2期96-100,共5页
A fatigue damage model is developed for evaluating accumulative fatigue damage of dumpers. The loading spectrums acted on dumpers are created according to measured strain data in field. The finite element analysis is ... A fatigue damage model is developed for evaluating accumulative fatigue damage of dumpers. The loading spectrums acted on dumpers are created according to measured strain data in field. The finite element analysis is carried out for assessing stress distribution and strength characteristics of dumpers. Fatigue damage indexes and service life are calculated by a modified Palmgren-Miner rule. The investigation shows that fatigue notch factor has a significant influence on the calculation of fatigue damage of dumpers. 展开更多
关键词 FATIGUE life prediction dumper miner's RULE FINITE ELEMENT analysis LOADING spectrums
在线阅读 下载PDF
New scheme of anticipating synchronization for arbitrary anticipation time and its application to long-term prediction of chaotic states
10
作者 孙中奎 徐伟 杨晓丽 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3226-3230,共5页
How to predict the dynamics of nonlinear chaotic systems is still a challenging subject with important real-life applications. The present paper deals with this important yet difficult problem via a new scheme of anti... How to predict the dynamics of nonlinear chaotic systems is still a challenging subject with important real-life applications. The present paper deals with this important yet difficult problem via a new scheme of anticipating synchronization. A global, robust, analytical and delay-independent sufficient condition is obtained to guarantee the existence of anticipating synchronization manifold theoretically in the framework of the Krasovskii-Lyapunov theory. Different from 'traditional techniques (or regimes)' proposed in the previous literature, the present scheme guarantees that the receiver system can synchronize with the future state of a transmitter system for an arbitrarily long anticipation time, which allows one to predict the dynamics of chaotic transmitter at any point of time if necessary. Also it is simple to implement in practice. A classical chaotic system is employed to demonstrate the application of the proposed scheme to the long-term prediction of chaotic states. 展开更多
关键词 anticipating synchronization long-term predictability chaotic systems
在线阅读 下载PDF
A Lightweight Temporal Convolutional Network for Human Motion Prediction 被引量:1
11
作者 WANG You QIAO Bing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期150-157,共8页
A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain... A lightweight multi-layer residual temporal convolutional network model(RTCN)is proposed to target the highly complex kinematics and temporal correlation of human motion.RTCN uses 1-D convolution to efficiently obtain the spatial structure information of human motion and extract the correlation in the time series of human motion.The residual structure is applied to the proposed network model to alleviate the problem of gradient disappearance in the deep network.Experiments on the Human 3.6M dataset demonstrate that the proposed method effectively reduces the errors of motion prediction compared with previous methods,especially of long-term prediction. 展开更多
关键词 human motion prediction temporal convolutional network short-term prediction long-term prediction deep neural network
在线阅读 下载PDF
Lithium-ion battery degradation trajectory early prediction with synthetic dataset and deep learning
12
作者 Mingqiang Lin Yuqiang You +3 位作者 Jinhao Meng Wei Wang Ji Wu Daniel-Ioan Stroe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期534-546,I0013,共14页
Knowing the long-term degradation trajectory of Lithium-ion(Li-ion) battery in its early usage stage is critical for the maintenance of the battery energy storage system(BESS) in reality. Previous battery health diagn... Knowing the long-term degradation trajectory of Lithium-ion(Li-ion) battery in its early usage stage is critical for the maintenance of the battery energy storage system(BESS) in reality. Previous battery health diagnosis methods focus on capacity and state of health(SOH) estimation which can receive only the short-term health status of the cell. This paper proposes a novel degradation trajectory prediction method with synthetic dataset and deep learning, which enables to grasp the characterization of the cell's health at a very early stage of Li-ion battery usage. A transferred convolutional neural network(CNN) is chosen to finalize the early prediction target, and the polynomial function based synthetic dataset generation strategy is designed to reduce the costly data collection procedure in real application. In this thread, the proposed method needs one full lifespan data to predict the overall degradation trajectories of other cells. With only the full lifespan cycling data from 4 cells and 100 cycling data from each cell in experimental validation, the proposed method shows a good prediction accuracy on a dataset with more than 100 commercial Li-ion batteries. 展开更多
关键词 Lithium-ion battery Degradation trajectory long-term prediction Transferred convolutional neural network
在线阅读 下载PDF
A kinetic model for predicting shelf-life of fresh extruded rice-shaped kernels(FER)
13
作者 Lu Li Xuejin Li +5 位作者 Ge Gao Yiming Yan Xiaodong Wang Yao Tang Yuqian Jiang Xihong Li 《Grain & Oil Science and Technology》 2022年第4期187-193,共7页
Fresh extruded rice-shaped kernels(FER) are remoulded rice products from cereals or seed flours, which have the advantages of safety, nutrition, health and time saving. However, the finished products are easy to react... Fresh extruded rice-shaped kernels(FER) are remoulded rice products from cereals or seed flours, which have the advantages of safety, nutrition, health and time saving. However, the finished products are easy to react with oxygen, so it is necessary to develop a fast, simple and reliable approach to monitor and predict the shelf-life of FER. A comprehensive mathematical model of FER shelf-life prediction was developed using a dynamic modelling approach based on real supply chain conditions. This predictive model was developed to determine four key indexes including acid value, iodine blue value, water uptake ratio and peroxide value. The results showed that when the peroxide value was 1.6849, the FER lost its edible value, nutritional value and commodity value. Moreover, the acid value and peroxide value of FER were used to establish a first-order kinetic model, and the iodine blue value of FER was suited for a zero-order kinetic model. The validation experiment of predicted and measured shelf life showed that the relative error was 3.12%, which was less than 5%. Therefore, this kinetic model could be used to predict the shelf-life of FER quickly and conveniently. The kinetic-based shelf-life prediction model proposed in this study is rapid and practical, providing theoretical basis and guidance for the establishment of quality monitoring and quality evaluation systems of FER during the production, storage, transport and marketing. 展开更多
关键词 Fresh extruded rice-shaped kernels Shelf life Kinetic model Rice ageing predicting
在线阅读 下载PDF
二次聚合个性化联邦的不同工况下滚动轴承寿命预测方法
14
作者 康守强 杨得济 +2 位作者 王玉静 王庆岩 谢金宝 《振动与冲击》 北大核心 2025年第2期254-266,共13页
针对不同工况下滚动轴承振动数据分布差异大,单一用户数据量少且多个用户间数据不共享的问题,提出一种二次聚合个性化联邦的滚动轴承寿命预测方法。该方法用不同深度的自编码器提取多尺度特征信息并压缩为散点图,实现特征增强;利用无监... 针对不同工况下滚动轴承振动数据分布差异大,单一用户数据量少且多个用户间数据不共享的问题,提出一种二次聚合个性化联邦的滚动轴承寿命预测方法。该方法用不同深度的自编码器提取多尺度特征信息并压缩为散点图,实现特征增强;利用无监督二元回归模型确定第一预测时间,构建分段退化标签;提出二次聚合个性化联邦学习算法,各用户构建改进的卷积神经网络-长短时记忆网络模型,并将其参数上传至服务端,服务端采用多任务学习框架,一次聚合多用户同种工况模型参数;在此基础上,利用批量归一化层参数统计信息计算一次聚合模型间相似度,引入权重更新机制指导模型参数二次聚合,减少不同工况模型间的负迁移现象并学习有益的全局知识,最终形成针对各工况的个性化预测模型。经试验验证,所提方法在保障数据隐私的前提下,可实现不同工况下滚动轴承寿命预测,并且预测的平均得分与不考虑数据隐私的集中式学习方法相当、相较于联邦平均算法平均得分提高0.2197。 展开更多
关键词 滚动轴承 多尺度特征提取 联邦学习 个性化 剩余寿命预测
在线阅读 下载PDF
一种基于CHABOCHE模型参数的疲劳寿命预测模型
15
作者 张禄 任春晓 +1 位作者 高金 刘宏利 《中南大学学报(自然科学版)》 北大核心 2025年第1期258-268,共11页
通过对相邻应力之比、材料S-N特性曲线双对数斜率及前一级疲劳累积损伤3项要素的分析,提出一种基于CHABOCHE模型参数的非线性疲劳寿命预测模型。该模型在参考多个非线性疲劳模型作用系数构成要素基础上,分析疲劳寿命预测模型所涉及构成... 通过对相邻应力之比、材料S-N特性曲线双对数斜率及前一级疲劳累积损伤3项要素的分析,提出一种基于CHABOCHE模型参数的非线性疲劳寿命预测模型。该模型在参考多个非线性疲劳模型作用系数构成要素基础上,分析疲劳寿命预测模型所涉及构成函数要素,结合已有疲劳试验数据分析,并引入CHABOCHE模型的参数,提出一种用于疲劳寿命预测的新的作用系数。运用两级及多级疲劳试验数据,分别计算并对比MINER模型、MANSON-HALFORD模型、YG模型、YUE模型、HAGHGOUEI模型、GAO模型、ZHAO模型、ZHANG模型、SUBRAMANYAN模型、HASHIN模型及新模型的疲劳寿命预测结果。研究结果表明:本文提出的新模型的疲劳寿命预测精度更高,该模型在多级应力载荷下的金属材料结构设计与疲劳寿命预测方面具有工程应用价值及实际意义。 展开更多
关键词 CHABOCHE模型 非线性模型 多级应力 疲劳损伤 寿命预测
在线阅读 下载PDF
煤矿设备全寿命周期健康管理与智能维护研究综述
16
作者 曹现刚 段雍 +8 位作者 王国法 赵江滨 任怀伟 赵福媛 杨鑫 张鑫媛 樊红卫 薛旭升 李曼 《煤炭学报》 北大核心 2025年第1期694-714,共21页
近年来,随着煤矿智能化技术快速发展,煤矿设备全寿命周期健康管理与智能维护技术作为实现煤矿设备运行健康状态智能感知、智能识别和维护决策,保障煤矿设备高效可靠运行的重要手段,相关研究受到了广泛关注。然而,目前煤矿仍然以事后维... 近年来,随着煤矿智能化技术快速发展,煤矿设备全寿命周期健康管理与智能维护技术作为实现煤矿设备运行健康状态智能感知、智能识别和维护决策,保障煤矿设备高效可靠运行的重要手段,相关研究受到了广泛关注。然而,目前煤矿仍然以事后维修、预防维修等方式为主,难以满足煤矿设备的高可靠性需求。基于此,综述了煤矿设备全寿命周期健康管理与智能维护的研究进展以推动其在煤矿的应用,阐释了煤矿设备全寿命周期的健康管理与智能维护内涵,给出了煤矿设备健康管理与智能维护总框架。从煤矿设备大数据管理方法、健康状态评估方法、剩余使用寿命预测方法、智能维护决策方法4个方面分析了煤矿设备健康管理与智能维护方法研究现状。在煤矿设备大数据管理方面,总结了煤矿设备多源信息感知、大数据清洗、大数据集成及存储方法的最新研究成果,深入分析对比了相关方法的应用情况,指出了现阶段煤矿设备大数据管理存在的挑战。在煤矿设备健康状态评估方面,从煤矿设备监测信号特征提取、健康状态等级划分、健康状态评估模型构建3个方面出发探讨了煤矿设备健康状态评估关键方法最新发展现状,对比分析了不同方法的优缺点,总结了该领域面临的难题。在煤矿设备剩余使用寿命预测方面,分析了统计模型方法、物理模型方法和数据驱动方法在煤矿设备剩余使用寿命预测上的优缺点,指出了煤矿设备剩余使用寿命方法存在的问题。在煤矿设备智能维护决策方面,明确了煤矿设备预测性维护决策主要步骤,对比分析了煤矿设备智能维护方法最新研究成果及其优缺点,归纳了现阶段煤矿设备智能维护方法研究的不足。结合煤矿设备全寿命周期健康管理与智能维护面临的挑战及发展要求,从煤矿设备大数据管理方法、时变工况下设备健康评估方法、多因素影响下设备剩余使用寿命方法、煤矿设备多目标智能维护决策方法、健康管理与智能维护算法集成及系统开发等方面对煤矿设备健康管理与智能维护提出了展望,指明了煤矿设备健康管理与智能维护关键理论、方法的研究方向,为提升煤矿设备健康管理及智能维护水平,促进煤炭工业转型升级和高质量发展提供依据。 展开更多
关键词 煤矿设备 大数据管理 健康状态评估 剩余使用寿命预测 智能维护决策
在线阅读 下载PDF
盐冻作用下再生砖粉ECC力学性能及寿命预测
17
作者 楚留声 赵静静 +2 位作者 赫约西 元成方 程站起 《建筑科学与工程学报》 北大核心 2025年第2期131-141,共11页
利用再生砖粉取代石英砂制备工程用水泥基复合材料(ECC),研究了不同砖粉取代率对ECC力学性能的影响;根据力学性能试验结果选取再生砖粉100%取代石英砂制备再生砖粉ECC,对比其与基准配合比ECC、同强度等级混凝土在不同介质(清水、NaCl溶... 利用再生砖粉取代石英砂制备工程用水泥基复合材料(ECC),研究了不同砖粉取代率对ECC力学性能的影响;根据力学性能试验结果选取再生砖粉100%取代石英砂制备再生砖粉ECC,对比其与基准配合比ECC、同强度等级混凝土在不同介质(清水、NaCl溶液、Na_(2)SO_(4)溶液以及NaCl与Na_(2)SO_(4)混合溶液)侵蚀下的抗冻耐久性,对不同侵蚀介质下基准配合比ECC和再生砖粉ECC的抗冻耐久性寿命进行预测。结果表明:随再生砖粉取代率的增大,ECC的抗折与抗压强度逐渐减小,100%取代率下基体抗折强度为16.5 MPa,抗压强度为33.7 MPa;不同砖粉取代率下基体拉应变均可达2.5%以上,且弯曲韧性良好;300次冻融循环后,C30混凝土质量损失率、相对动弹性模量变化率及抗压强度损失率均最大,再生砖粉ECC次之,基准配合比ECC最小;基准配合比ECC和再生砖粉ECC均具有良好的抗盐冻能力;再生砖粉ECC在“三北”地区的抗冻耐久性良好,单一冻融环境下抗冻耐久性寿命均在90年以上,单一盐冻环境下均在65年以上。 展开更多
关键词 工程用水泥基复合材料 再生砖粉 盐冻 质量损失率 相对动弹性模量 寿命预测
在线阅读 下载PDF
基于遗传算法优化的拖拉机发动机剩余寿命预测模型
18
作者 李有文 《农机化研究》 北大核心 2025年第6期264-268,共5页
拖拉机发动机剩余寿命预测对于提高工作效率、降低维修成本、延长机器寿命和保障安全运行具有重要意义。通过预测发动机剩余寿命,可以更好地进行资源规划和分配。为此,提出了一种基于遗传算法优化的拖拉机发动机剩余寿命预测模型,结合... 拖拉机发动机剩余寿命预测对于提高工作效率、降低维修成本、延长机器寿命和保障安全运行具有重要意义。通过预测发动机剩余寿命,可以更好地进行资源规划和分配。为此,提出了一种基于遗传算法优化的拖拉机发动机剩余寿命预测模型,结合遗传算法和剩余寿命预测方法,通过优化遗传算法的参数,提高了预测模型的准确性和稳定性。同时,通过收集大量的拖拉机发动机运行数据,提取与剩余寿命相关的特征,基于遗传算法寻找最佳的特征子集建立了预测模型。最后,通过试验验证了模型在拖拉机发动机剩余寿命预测方面的有效性。结果表明:与传统的预测模型相比,基于遗传算法优化的模型具有更高的预测准确性和稳定性,RMSE为6.023,MAE仅为4.531。研究结果可以有效地应用于拖拉机发动机剩余寿命预测和维护决策中。 展开更多
关键词 拖拉机发动机 寿命预测 遗传算法 神经网络 相关性
在线阅读 下载PDF
基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法
19
作者 冷建成 赵雷 +1 位作者 张新 许宏伟 《材料导报》 北大核心 2025年第2期204-209,共6页
对服役构件进行在线监测并预测其疲劳寿命具有重要的工程意义。基于45钢缺口试件的拉-拉疲劳试验,利用金属磁记忆在线监测系统实时跟踪记录了试件缺口位置在整个疲劳循环过程中的磁信号变化。通过对原始监测信号进行卡尔曼滤波处理,结... 对服役构件进行在线监测并预测其疲劳寿命具有重要的工程意义。基于45钢缺口试件的拉-拉疲劳试验,利用金属磁记忆在线监测系统实时跟踪记录了试件缺口位置在整个疲劳循环过程中的磁信号变化。通过对原始监测信号进行卡尔曼滤波处理,结果表明x向和y向磁记忆信号可以将整个疲劳过程划分为三个阶段,且y向磁信号对疲劳损伤演变更加敏感;进一步引入y向磁场梯度的标准差和鞘度作为特征参数,其对应的峰值点可分别作为第一、二阶段和第二、三阶段的分界点指标。同时提出了x向磁信号突变点的峰值可用于表征试件断裂前的预警信息,并探讨了磁信号变化背后的机理,为再制造毛坯的疲劳寿命预测提供参考。 展开更多
关键词 金属磁记忆 在线监测 疲劳寿命预测 卡尔曼滤波 标准差 峭度
在线阅读 下载PDF
宽带故障全天候实时智能化管控机器人研究及应用
20
作者 范琨 陈虎 耿岩 《邮电设计技术》 2025年第1期78-82,共5页
为提升网络质量,研发了宽带故障全天候实时智能化管控机器人,该机器人通过有线宽带链路通道质量智能检测技术和宽带故障全生命实时智能化管控系统预判网络故障并做出智能响应。利用随机森林算法训练模型预测故障,整合宽带网络实时数据,... 为提升网络质量,研发了宽带故障全天候实时智能化管控机器人,该机器人通过有线宽带链路通道质量智能检测技术和宽带故障全生命实时智能化管控系统预判网络故障并做出智能响应。利用随机森林算法训练模型预测故障,整合宽带网络实时数据,通过数据匹配和AI算法生成故障信息,并由钉钉机器人进行智能调度,实现故障层级、方案和人员的全覆盖,自动生成响应方案。实验表明,该机器人能有效预测高风险链路,故障处理高效,用户满意率大幅度提升。 展开更多
关键词 质差识别 预测预防 全生命周期管控 智能响应
在线阅读 下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部