期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM
1
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) Long short-term memory(lstm) Layer counting Multi-source fusion
在线阅读 下载PDF
An Efficient Correlation-Aware Anomaly Detection Framework in Cellular Network 被引量:1
2
作者 Haihan Nan Xiaoyan Zhu Jianfeng Ma 《China Communications》 SCIE CSCD 2022年第8期168-180,共13页
Nowadays,the fifth-generation(5G)mobile communication system has obtained prosperous development and deployment,reshaping our daily lives.However,anomalies of cell outages and congestion in 5G critically influence the... Nowadays,the fifth-generation(5G)mobile communication system has obtained prosperous development and deployment,reshaping our daily lives.However,anomalies of cell outages and congestion in 5G critically influence the quality of experience and significantly increase operational expenditures.Although several big data and artificial intelligencebased anomaly detection methods have been proposed for wireless cellular systems,they change distributions of the data and ignore the relevance among user activities,causing anomaly detection ineffective for some cells.In this paper,we propose a highly effective and accurate anomaly detection framework by utilizing generative adversarial networks(GAN)and long short-term memory(LSTM)neural networks.The framework expands the original dataset while simultaneously keeping the distribution of data unchanged,and explores the relevance among user activities to further improve the system performance.The results demonstrate that our framework can achieve 97.16%accuracy and 2.30%false positive rate by utilizing the correlation of user activities and data expansion. 展开更多
关键词 cellular network anomaly detection generative adversarial networks(GAN) long short-term memory(lstm) call detail record(CDR)
在线阅读 下载PDF
An Aircraft Trajectory Anomaly Detection Method Based on Deep Mixture Density Network 被引量:1
3
作者 CHEN Lijing ZENG Weili YANG Zhao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期840-851,共12页
The timely and accurately detection of abnormal aircraft trajectory is critical to improving flight safety.However,the existing anomaly detection methods based on machine learning cannot well characterize the features... The timely and accurately detection of abnormal aircraft trajectory is critical to improving flight safety.However,the existing anomaly detection methods based on machine learning cannot well characterize the features of aircraft trajectories.Low anomaly detection accuracy still exists due to the high-dimensionality,heterogeneity and temporality of flight trajectory data.To this end,this paper proposes an abnormal trajectory detection method based on the deep mixture density network(DMDN)to detect flights with unusual data patterns and evaluate flight trajectory safety.The technique consists of two components:Utilization of the deep long short-term memory(LSTM)network to encode features of flight trajectories effectively,and parameterization of the statistical properties of flight trajectory using the Gaussian mixture model(GMM).Experiment results on Guangzhou Baiyun International Airport terminal airspace show that the proposed method can effectively capture the statistical patterns of aircraft trajectories.The model can detect abnormal flights with elevated risks and its performance is superior to two mainstream methods.The proposed model can be used as an assistant decision-making tool for air traffic controllers. 展开更多
关键词 aircraft trajectory anomaly detection mixture density network long short-term memory(lstm) Gaussian mixture model(GMM)
在线阅读 下载PDF
Video Description with Integrated Visual and Textual Information 被引量:1
4
作者 Yue Wang Jinlai Liu Xiaojie Wang 《China Communications》 SCIE CSCD 2019年第1期119-128,共10页
Video Description aims to automatically generate descriptive natural language for videos.Due to the large volume of multi-modal data and successful implementations of Deep Neural Networks(DNNs),a wide range of models ... Video Description aims to automatically generate descriptive natural language for videos.Due to the large volume of multi-modal data and successful implementations of Deep Neural Networks(DNNs),a wide range of models have been proposed.However,previous models learn insufficient linguistic information or correlation between visual and textual modalities.In order to address those problems,this paper proposes an integrated model using Long Short-Term Memory(LSTM).This proposed model consists of triple channels in parallel:a primary video description channel,a sentence-to-sentence channel for language learning,and a channel to integrate visual and textual information.Additionally,the parallel three channels are connected by LSTM weight matrices during training.The VD-ivt model is evaluated on two publicly available datasets,i.e.Youtube2 Text and LSMDC.Experimental results demonstrate that the performance of the proposed model outperforms those benchmarks. 展开更多
关键词 VIDEO description(VD) deep NEURAL network(DNN) convolutional NEURAL network(CNN) long short-term memory(lstm)
在线阅读 下载PDF
Situational continuity-based air combat autonomous maneuvering decision-making 被引量:1
5
作者 Jian-dong Zhang Yi-fei Yu +3 位作者 Li-hui Zheng Qi-ming Yang Guo-qing Shi Yong Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期66-79,共14页
In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation eval... In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation evaluation function with strong guidance,then trains the Long Short-Term Memory(LSTM)under the framework of Deep Q Network(DQN)for air combat maneuvering decision-making.Considering the continuity between adjacent situations,the method takes multiple consecutive situations as one input of the neural network.To reflect the difference between adjacent situations,the method takes the difference of situation evaluation value as the reward of reinforcement learning.In different scenarios,the algorithm proposed in this paper is compared with the algorithm based on the Fully Neural Network(FNN)and the algorithm based on statistical principles respectively.The results show that,compared with the FNN algorithm,the algorithm proposed in this paper is more accurate and forwardlooking.Compared with the algorithm based on the statistical principles,the decision-making of the algorithm proposed in this paper is more efficient and its real-time performance is better. 展开更多
关键词 UAV Maneuvering decision-making Situational continuity Long short-term memory(lstm) Deep Q network(DQN) Fully neural network(FNN)
在线阅读 下载PDF
Measuring moisture content of dead fine fuels based on the fusion of spectrum meteorological data
6
作者 Bo Peng Jiawei Zhang +2 位作者 Jian Xing Jiuqing Liu Mingbao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1333-1346,共14页
Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DF... Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DFFMC,this study established a long short-term memory(LSTM)network based on particle swarm optimization(PSO)algorithm as a measurement model.A multi-point surface monitoring scheme combining near-infrared measurement method and meteorological measurement method is proposed.The near-infrared spectral information of dead fine fuels and the meteorological factors in the region are processed by data fusion technology to construct a spectral-meteorological data set.The surface fine dead fuel of Mongolian oak(Quercus mongolica Fisch.ex Ledeb.),white birch(Betula platyphylla Suk.),larch(Larix gmelinii(Rupr.)Kuzen.),and Manchurian walnut(Juglans mandshurica Maxim.)in the maoershan experimental forest farm of the Northeast Forestry University were investigated.We used the PSO-LSTM model for moisture content to compare the near-infrared spectroscopy,meteorological,and spectral meteorological fusion methods.The results show that the mean absolute error of the DFFMC of the four stands by spectral meteorological fusion method were 1.1%for Mongolian oak,1.3%for white birch,1.4%for larch,and 1.8%for Manchurian walnut,and these values were lower than those of the near-infrared method and the meteorological method.The spectral meteorological fusion method provides a new way for high-precision measurement of moisture content of fine dead fuel. 展开更多
关键词 Near infrared spectroscopy Meteorological factors Data fusion long-term and short-term memory network Particle swarm optimization algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部