期刊文献+
共找到931篇文章
< 1 2 47 >
每页显示 20 50 100
基于ARIMA-LSTM的矿区地表沉降预测方法 被引量:4
1
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测 被引量:1
2
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 短时过零率 双向长短时记忆网络 时序注意力机制
在线阅读 下载PDF
基于时空关联规则与LSTM的机场进港延误等级预测
3
作者 李善梅 王端阳 +3 位作者 唐锐 李艳伟 李锦辉 纪亚宏 《中国安全科学学报》 北大核心 2025年第4期59-66,共8页
为提升空中交通运行安全,提出一种基于时空关联规则挖掘和深度学习相结合的延误等级预测方法。首先,选取平均航班延误时间和延误率作为机场进港延误度量指标,并分析其时空关联特性;其次,基于模糊C均值(FCM)聚类算法划分机场进港延误等级... 为提升空中交通运行安全,提出一种基于时空关联规则挖掘和深度学习相结合的延误等级预测方法。首先,选取平均航班延误时间和延误率作为机场进港延误度量指标,并分析其时空关联特性;其次,基于模糊C均值(FCM)聚类算法划分机场进港延误等级,并在此基础上,基于频繁模式增长(FP-Growth)算法挖掘机场进港延误的时空关联规则;然后,基于规则数据以及延误指标数据构建样本数据,作为长短时记忆(LSTM)模型的输入,输出为未来时段机场进港延误等级,同时引入注意力机制,学习不同规则对预测结果的影响程度;最后,采用美国航班数据进行算例分析。结果表明:总体预测的平均准确率达到0.91,不同时段的预测准确率均在80%以上,注意力层网络的连接权重可解释预测结果。 展开更多
关键词 时空关联规则 长短时记忆(lstm) 机场进港 延误等级 延误预测 空中交通管理
在线阅读 下载PDF
基于MC2DCNN-LSTM模型的齿轮箱全故障分类识别模型
4
作者 陈蓉 王磊 《机电工程》 北大核心 2025年第2期287-297,共11页
针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识... 针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识别与分类目的,对齿轮箱典型故障进行了自适应分类;其次,该模型将齿轮箱的垂直、水平和轴向三个方向的振动信号融合构造输入样本,结合了二维卷积神经网络与长短时记忆神经网络的优势,设计了与之对应的二维卷积神经网络结构,其相较于传统的单通道信号包含了更多的状态信息;最后,分析了轧制过程数据和已有实验数据,对齿轮故障和齿轮箱全故障进行了特征识别和分类,验证了该模型的准确率。研究结果表明:模型对齿轮箱齿面磨损、齿根裂纹、断齿以及齿面点蚀等典型故障识别的平均准确率达到95.9%,最高准确率为98.6%;相较于单通道信号,多通道信号混合编码方式构造的分类样本极大地提升了神经网络分类的准确性,解调出了更丰富的故障信息。根据轧制过程中的运行数据和实验台数据,验证了该智能诊断方法较传统方法在分类和识别准确率上更具优势,为该方法的工程应用提供了理论基础。 展开更多
关键词 高精度轧机齿轮箱 智能故障诊断 多通道二维卷积神经网络 长短期记忆神经网络 数据分类
在线阅读 下载PDF
基于LSTM-DDPG的再入制导方法
5
作者 闫循良 王宽 +1 位作者 张子剑 王培臣 《系统工程与电子技术》 北大核心 2025年第1期268-279,共12页
针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LST... 针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LSTM-DDPG)的再入制导方法。该方法采用纵、侧向制导解耦设计思想,在纵向制导方面,首先针对再入制导问题构建强化学习所需的状态、动作空间;其次,确定决策点和制导周期内的指令计算策略,并设计考虑综合性能的奖励函数;然后,引入LSTM网络构建强化学习训练网络,进而通过在线更新策略提升算法的多任务适用性;侧向制导则采用基于横程误差的动态倾侧反转方法,获得倾侧角符号。以美国超音速通用飞行器(common aero vehicle-hypersonic,CAV-H)再入滑翔为例进行仿真,结果表明:与传统数值预测-校正方法相比,所提制导方法具有相当的终端精度和更高的计算效率优势;与现有基于DDPG算法的再入制导方法相比,所提制导方法具有相当的计算效率以及更高的终端精度和鲁棒性。 展开更多
关键词 再入滑翔制导 强化学习 深度确定性策略梯度 长短期记忆网络
在线阅读 下载PDF
基于多头LSTM模型的南疆枣树土壤墒情预测 被引量:1
6
作者 杨轶航 吕德生 +4 位作者 刘宁宁 王振华 李淼 张金珠 王东旺 《水资源与水工程学报》 北大核心 2025年第2期207-217,共11页
在南疆枣业生产中,准确预测土壤墒情对于优化作物种植质量和制定灌溉计划至关重要。通过建立高精度的土壤墒情预测模型,为南疆枣树的灌溉管理提供了科学依据。基于2021和2022年的全生育期枣树在20、40、60、80 cm土层的土壤墒情数据、... 在南疆枣业生产中,准确预测土壤墒情对于优化作物种植质量和制定灌溉计划至关重要。通过建立高精度的土壤墒情预测模型,为南疆枣树的灌溉管理提供了科学依据。基于2021和2022年的全生育期枣树在20、40、60、80 cm土层的土壤墒情数据、气象数据以及灌溉水量等小时级数据集,采用长短期记忆神经网络(LSTM)模型对各土层土壤墒情进行多步预测。引入了由4个单一LSTM模型组成的多头LSTM模型,旨在扩大预测范围并提高预测精度,并采用k折交叉验证结合麻雀搜索算法(SSA)对每个单一LSTM模型进行超参数调优,以提升模型的泛化能力和准确性。对各单一模型的输出进行加权平均,获得最终的预测结果。结果表明:在4个土层墒情均值数据集上,多头LSTM模型对未来1、12、24、48 h的土壤墒情预测的决定系数(R^(2))分别提升至0.951、0.932、0.870、0.815;多头LSTM模型可有效提升枣树土壤墒情的中长期预测精度,特别是在24和48 h的预测中,改进效果尤为明显,这为枣树的精细化灌溉管理提供了有力支持,可帮助农民更有效地利用水资源,减少浪费。 展开更多
关键词 土壤墒情预测 多头lstm 麻雀搜索算法 k折交叉验证 南疆滴灌骏枣
在线阅读 下载PDF
基于自适应VMD-LSTM的超短期风电功率预测 被引量:3
7
作者 王迪 傅晓锦 杜诗琪 《南京信息工程大学学报》 北大核心 2025年第1期74-87,共14页
针对风电功率波动性较强和预测精度较低的问题,提出一种改进蜣螂优化算法(Logistic-T-Dung Beetle Optimizer,LTDBO)优化变分模态分解(Variational Mode Decomposition,VMD)参数和LTDBO算法优化长短期记忆网络(Long Short-Term Memory,L... 针对风电功率波动性较强和预测精度较低的问题,提出一种改进蜣螂优化算法(Logistic-T-Dung Beetle Optimizer,LTDBO)优化变分模态分解(Variational Mode Decomposition,VMD)参数和LTDBO算法优化长短期记忆网络(Long Short-Term Memory,LSTM)超参数的混合短期风电功率预测模型.首先以平均包络谱峭度作为适应度函数,利用LTDBO算法对VMD分解层数和惩罚因子进行寻优,然后使用VMD对数据清洗后的风电序列进行分解,得到不同频率的平稳的固有模态分量(Intrinsic Mode Function,IMF),并将各IMF输入由LTDBO进行超参数寻优的LSTM进行预测,最后将各IMF预测值进行叠加重构,得到最终结果.实验结果表明:LTDBO算法可以找到VMD和LSTM的最优超参数组合,LTDBO-VMD-LTDBO-LSTM组合模型在风电功率预测领域具有较好的预测精度和鲁棒性. 展开更多
关键词 风电功率 蜣螂优化算法 变分模态分解 长短期记忆网络 数据清洗
在线阅读 下载PDF
基于SLSTM网络的两级修正机动目标跟踪方法
8
作者 汪晋 苏洪涛 +1 位作者 汪圣利 陆超 《西安电子科技大学学报》 北大核心 2025年第1期37-49,共13页
传统机动目标跟踪方法在机动模型建模方面,通过模型集自适应交互的方式,实现模型与目标真实运动的匹配。在跟踪非合作目标时,由于机动状态随时变化,且机动形式多样,当模型集内的有限个模型均无法精准表征其真实运动时,跟踪性能下降。将... 传统机动目标跟踪方法在机动模型建模方面,通过模型集自适应交互的方式,实现模型与目标真实运动的匹配。在跟踪非合作目标时,由于机动状态随时变化,且机动形式多样,当模型集内的有限个模型均无法精准表征其真实运动时,跟踪性能下降。将模型修正和状态修正两级神经网络融入到滤波递推过程中,提出一种基于堆叠长短时记忆(Stacked Long Short-Term Memory,SLSTM)网络的两级修正机动目标跟踪方法(Two Level Modified Maneuvering Target Tracking,TLM-MTT),第一级模型修正网络实时感知目标的机动,调整模型参数,实现机动模型的精准建模,第二级状态修正网络对状态估计进行实时补偿,提升滤波输出的精度。通过离线方式进行网络训练,训练后的网络用于在线实时跟踪,相较于传统方法和其他智能化滤波方法,文中所提方法对高机动目标跟踪具有更好的跟踪性能。 展开更多
关键词 目标跟踪 长短时记忆网络 卡尔曼滤波
在线阅读 下载PDF
基于差分处理的EMD-LSTM短时空中交通流量预测
9
作者 周睿 邱爽 +2 位作者 孟双杰 李明 张强 《科学技术与工程》 北大核心 2025年第2期842-849,共8页
随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(emp... 随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(empirical mode decomposition,EMD)和长短期记忆(long short-term memory,LSTM)相结合的短时空中交通流量预测模型。首先,该模型对短时空中交通流量序列进行经验模态分解;其次,为了提高预测精度,运用数据差分对时间序列进行平稳化处理;最后,将平稳处理后的序列分别输入LSTM网络模型进行预测,经过数据重构,得到最终的短时流量预测值。利用郑州新郑国际机场数据进行了实验验证,结果表明,该模型预测精度和拟合程度的典型指标RSME、MAE、R^(2)分别为0.29%,0.08%、96.40%,相较于其他方法,预测精度大幅度提高,可以为短时空中交通流量预测提供有益参考。 展开更多
关键词 空中交通流量管理 短时空中交通流量预测 经验模态分解(empirical mode decomposition EMD) 数据差分处理(data differential processing) 长短期记忆(long short-term memory lstm)
在线阅读 下载PDF
基于LSTM-GRU-Attention模型的管道直饮水月供水量预测
10
作者 刘颖 刘治学 +5 位作者 郭广丰 刘保卫 杜帅帅 王鹏渊 张新田 赵继然 《水资源与水工程学报》 北大核心 2025年第3期116-124,共9页
管道直饮水月供水量的预测受到多种因素的影响,如气温变化、节假日效应以及用户数量变动等,这些因素共同作用导致供水量序列呈现出复杂性、非线性和非平稳性的特点。为了提高预测模型的准确度并优化其网络结构,提出了一种结合长短期记忆... 管道直饮水月供水量的预测受到多种因素的影响,如气温变化、节假日效应以及用户数量变动等,这些因素共同作用导致供水量序列呈现出复杂性、非线性和非平稳性的特点。为了提高预测模型的准确度并优化其网络结构,提出了一种结合长短期记忆(LSTM)、门控循环单元(GRU)与注意力机制(Attention)的LSTM-GRU-Attention预测模型。该模型通过贝叶斯优化算法确定最优超参数,并将外部因素如气温等与历史月供水量数据一起作为输入时间序列,借助Attention机制,模型能够对输入序列中的不同时间步进行加权处理,从而更准确地捕捉供水量的波峰和波谷值。结果表明:与单独使用LSTM、GRU及LSTM-GRU模型相比,LSTM-GRU-Attention模型在预测精度上有显著提升,平均绝对百分比误差(MAPE)达到了6.89%,较其他3种模型分别降低了7.74%、6.29%和5.23%,同时收敛速度更快。LSTM-GRU-Attention模型在高效预测管道直饮水月供水量方面展现了显著的效果,有助于直饮水企业合理安排生产计划、降低运营成本及提升管理水平,显示出较高的应用价值。 展开更多
关键词 管道直饮水 月供水量预测 长短期记忆网络 门控循环单元 lstm-GRU-Attention模型
在线阅读 下载PDF
基于优化的EMD-LSTM的土石坝沉降预测模型研究
11
作者 李宗淇 姚成林 赵文波 《水利水电技术(中英文)》 北大核心 2025年第S1期272-281,共10页
针对土石坝沉降预测模型中回归模型易受多重共线性影响,神经网络模型存在过拟合、局部极值陷阱以及超参数难以确定等问题,提出了一种基于经验模态分解(EMD)和长短期记忆神经网络(LSTM)的优化模型。首先,通过EMD对全球导航卫星系统(GNSS... 针对土石坝沉降预测模型中回归模型易受多重共线性影响,神经网络模型存在过拟合、局部极值陷阱以及超参数难以确定等问题,提出了一种基于经验模态分解(EMD)和长短期记忆神经网络(LSTM)的优化模型。首先,通过EMD对全球导航卫星系统(GNSS)测点的时间序列数据进行多尺度分解,提取趋势和周期成分。然后,利用主成分分析(PCA)筛选关键影响因子,减少数据维度,提高模型的泛化能力。最后,采用LSTM构建时间序列模型,并通过鲸鱼优化算法(WOA)优化LSTM的超参数,以提升模型的预测精度和收敛速度。实验结果表明,该模型在土石坝沉降预测中具有显著的优势,均方误差(MSE)为7.070 1,平均绝对误差(MAE)为1.885 9,拟合优度(R2)为99.83%。与传统方法相比,该模型在降噪、特征捕捉和超参数优化等方面均有明显提升,可为土石坝沉降提供可靠的预测方案。 展开更多
关键词 土石坝 沉降预测 模型 经验模态分解(EMD) 长短期记忆神经网络(lstm)
在线阅读 下载PDF
基于改进Prophet-LSTM-PSO的大坝异常数据检测模型
12
作者 葛大龙 丁勇 李登华 《中国安全科学学报》 北大核心 2025年第8期164-170,共7页
为提升大坝监测数据的异常检测性能,提出一种基于改进Prophet-长短期记忆(LSTM)-粒子群优化(PSO)的大坝异常数据检测模型。首先,通过改进Prophet法使得异常数据点位分解得到趋势分量特征;其次,将分解得到的趋势、周期和残差分量映射到... 为提升大坝监测数据的异常检测性能,提出一种基于改进Prophet-长短期记忆(LSTM)-粒子群优化(PSO)的大坝异常数据检测模型。首先,通过改进Prophet法使得异常数据点位分解得到趋势分量特征;其次,将分解得到的趋势、周期和残差分量映射到三维空间,以三维空间中近邻均值距离数据代替原始时序数据;最后,结合LSTM网络与PSO算法,设定与优化异常阈值,进而实现异常数据的精准识别。结果表明:相较于传统模型,该模型在检测效果上具有明显提升,且表现出较高的稳定性。在召回率稳定维持在95%以上的前提下,精确率与准确率均超过95%,验证了该方法的有效性与实用性。 展开更多
关键词 PROPHET 长短期记忆(lstm) 粒子群优化(PSO) 异数据常检测 大坝监测数据
在线阅读 下载PDF
基于BO-LSTM的排露沟流域气象水文演变分析及径流预测模型建立 被引量:1
13
作者 康永德 陈佩 +3 位作者 许尔文 任小凤 敬文茂 张娟 《水利水电技术(中英文)》 北大核心 2025年第4期1-11,共11页
【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温... 【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温对径流量变化的影响,并建立了BO-LSTM排露沟流域径流预测模型。【结果】结果显示:(1)2000—2019年排露沟流域降水、气温和径流呈现两段式的上升趋势,分界点在2010年,降水和径流,第一阶段上升趋势均高于第二阶段,斜率依次为10.74、3.16;气温则相反,第二阶段高于第一阶段,斜率为0.11。并且降水、气温和径流的MK突变检验z值均大于0。(2)降水量在5—10月对径流量变化的贡献率较大;而气温在12月—次年4月对径流变化的贡献率大。(3)排露沟流域气温主要有3 a、14 a两个主周期,其中第一主周期为14 a;径流存在19 a、9 a和3 a三个主周期,其中第一主周期为19 a;降水主要存在4 a、11 a两个主周期,第一主周期为11 a。(4)BO-LSTM排露沟径流预测模型,精度R 2为0.63,均方根误差为14047 m 3,模型在径流量较小月份的预测精度大于径流量较大的月份。【结论】近20年来排露沟流域的降水、气温及径流均呈上升趋势;排露沟流域径流、降水及气温均存在明显的周期性;气温和降水是影响排露沟流域径流的重要因素;径流预测模型可以适用于排露沟流域。上述研究结果为祁连山水资源效应研究和内陆河流域水资源预测提供科学支撑。 展开更多
关键词 水文 水资源 径流演变 排露沟流域 径流预测 神经网络 lstm(Long Short-Term memory)模型 贝叶斯优化算法
在线阅读 下载PDF
基于表面肌电信号的CNN-LSTM模型下肢动作识别
14
作者 周智伟 陶庆 +3 位作者 苏娜 刘景轩 李博文 裴浩 《科学技术与工程》 北大核心 2025年第7期2841-2848,共8页
为了提高对下肢运动的分类准确度,提出了一种基于表面肌电信号(surface electromyography, sEMG)的卷积神经网络与长短期记忆网络融合识别模型(convolutional neural network and long short-term memory network, CNN-LSTM)。首先,采集... 为了提高对下肢运动的分类准确度,提出了一种基于表面肌电信号(surface electromyography, sEMG)的卷积神经网络与长短期记忆网络融合识别模型(convolutional neural network and long short-term memory network, CNN-LSTM)。首先,采集了20名受试者进行上楼、下楼、行走和蹲起4种步态动作的sEMG;接着,对采集到的sEMG数据进行预处理,并提取了两种时域和频域特征,用作机器学习识别模型的特征输入;最后,基于预处理后肌电信号数据,构建了CNN-LSTM的下肢动作识别模型,并与CNN、LSTM和支持向量机(support vector machine, SVM)模型的性能进行对比。结果显示,CNN-LSTM模型在下肢动作识别准确率上分别比CNN、LSTM和SVM模型高出2.16%、8.34%、和11.16%,证明了其优越的分类性能。研究结论为康复医疗器械与助力器械提供了一个有效的下肢运动功能改善方案。 展开更多
关键词 表面肌电信号 下肢动作识别 CNN-lstm 卷积神经网络 长短时记忆网络
在线阅读 下载PDF
基于CNN-CBAM-LSTM的稳态视觉诱发电位脑电信号识别方法
15
作者 巩炫麟 陶庆 +1 位作者 苏娜 马金旭 《科学技术与工程》 北大核心 2025年第10期4175-4182,共8页
在使用传统方法处理稳态视诱发电位(steady-state visual evoked potentials,SSVEP)的脑电信号时,特征提取的准确性和充分性存在不足,影响信号的识别准确率。为此提出了一种基于卷积神经网路(convolutional neural networks,CNN)与卷积... 在使用传统方法处理稳态视诱发电位(steady-state visual evoked potentials,SSVEP)的脑电信号时,特征提取的准确性和充分性存在不足,影响信号的识别准确率。为此提出了一种基于卷积神经网路(convolutional neural networks,CNN)与卷积注意力机制模块(convolutional block attention module,CBAM)和长短时记忆网络(long short-term memory,LSTM)的信号分类识别方法。以CNN为基础框架,通过引入注意力机制对通道及空间特征进行充分提取,加入LSTM提高对时序特征的提取能力,实现对SSVEP信号的目标识别。实验结果显示,所提方法能够充分有效的提取各级特征且识别准确率较高,相比于典型相关分析方法(canonical correlation analysis,CCA)、CNN、CBAM-LSTM、CNN-CBAM识别准确率分别提高了5.3%、2.95%、2.27%、1.71%,可见该模型对SSVEP信号的分类识别有较好的效果。 展开更多
关键词 稳态视觉诱发电位 卷积神经网络 卷积注意力机制模块 长短时记忆网络 目标识别
在线阅读 下载PDF
变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法 被引量:2
16
作者 李嘉波 王志璇 +1 位作者 田迪 孙中麟 《储能科学与技术》 北大核心 2025年第2期659-670,共12页
锂离子电池在电动汽车、可再生能源等领域广泛应用,对其剩余使用寿命(remaining useful life,RUL)进行精确预测,能够实时把握电池的内在性能退化状态,降低电池使用风险。本工作提出了一种基于变模态分解(variational mode decomposition... 锂离子电池在电动汽车、可再生能源等领域广泛应用,对其剩余使用寿命(remaining useful life,RUL)进行精确预测,能够实时把握电池的内在性能退化状态,降低电池使用风险。本工作提出了一种基于变模态分解(variational mode decomposition,VMD)、麻雀优化算法(sparrow search algorithm,SSA)和长短期记忆网络(long short-term memory,LSTM)的组合预测算法对锂离子电池剩余寿命进行预测。首先,基于锂离子电池电流、电压以及温度曲线,提取等压差充电时间、等压差充电能量、放电温度峰值和恒流充电时间作为预测RUL的间接健康因子。其次,采用变模态分解法分解容量以避免容量回升的局部波动和测试噪声对RUL预测结果造成干扰。针对传统LSTM模型超参数设置易受到经验和随机性的影响,提出了麻雀优化算法对LSTM模型参数进行优化,以提升模型的预测能力。最后,应用NASA和CALCE数据集,将所提模型与其他模型进行对比。实验结果表明,锂离子电池RUL预测均方根误差控制在2%以内,所提方法具有较高的预测性能。 展开更多
关键词 锂离子电池 剩余使用寿命 变模态分解 麻雀优化算法 长短期记忆网络
在线阅读 下载PDF
基于LSTM模型的南果河流域日径流预测
17
作者 和艳 陆颖 +2 位作者 邓丽仙 余炳金 罗向阳 《水文》 北大核心 2025年第3期78-85,共8页
准确可靠的径流预测是水资源科学调度、高效利用的有力保障。数据驱动水文模型弱化水文循环物理过程,通过训练建立输入和输出之间的数学关系,为无下垫面资料流域径流预测提供解决方案。以澜沧江一级支流南果河为例,利用主成分分析(PCA)... 准确可靠的径流预测是水资源科学调度、高效利用的有力保障。数据驱动水文模型弱化水文循环物理过程,通过训练建立输入和输出之间的数学关系,为无下垫面资料流域径流预测提供解决方案。以澜沧江一级支流南果河为例,利用主成分分析(PCA)对样本数据进行降维处理,并基于长短期记忆神经网络(LSTM)模型,将前15 d的日径流量、日降水量作为模型的输入,对那勾坝水文站日径流进行1~5 d不同预见期的预测。结果表明:随预见期延长,模型预测精度不断下降。当预见期为1 d时,验证期和训练期纳什效率系数(NSE)均大于0.80,预测性能优于反向传播神经网络(BP)、支持向量机(SVM)与随机森林法(RF)三种数据驱动模型。结果可为无下垫面资料流域日径流预测提供参考。 展开更多
关键词 日径流预测 主成分分析(PCA) 长短期记忆神经网络(lstm) 南果河流域
在线阅读 下载PDF
煤层顶板涌水量TCN-LSTM-SVM时间序列预测模型构建与应用
18
作者 刘譞 姬亚东 +6 位作者 朱开鹏 赵春虎 李凯 李超峰 袁晨瀚 李盼盼 闫鹏珍 《煤田地质与勘探》 北大核心 2025年第6期201-211,共11页
【背景】矿井涌水量的准确预测对于煤矿水害防治、安全高效生产起着重要的作用。【方法】为构建适用于西部受巨厚砂岩含水层水害威胁矿井的涌水量预测模型,以受该种水害严重影响的陕西彬长矿区某典型矿井为研究对象,基于工作面回采进尺... 【背景】矿井涌水量的准确预测对于煤矿水害防治、安全高效生产起着重要的作用。【方法】为构建适用于西部受巨厚砂岩含水层水害威胁矿井的涌水量预测模型,以受该种水害严重影响的陕西彬长矿区某典型矿井为研究对象,基于工作面回采进尺与涌水量数据之间的相关关系,选取其作为矿井涌水量时间序列预测的特征变量,提出基于时域卷积网络(temporal convolutional networks,TCN)的长短期记忆网络(long-short term memory,LSTM)−支持向量机(support vector machines,SVM)矿井工作面涌水量耦合预测模型,即TCN-LSTM-SVM模型。该模型首先通过TCN框架对原数据进行处理,提取回采进尺与涌水量之间的依赖关系和动态特征,随后将提取特征输出到后续的LSTMSVM组合模型,以进一步捕捉回采进尺与涌水量之间的时序关系和特征。【结果】模型训练与预测结果显示:TCN-LSTM-SVM耦合模型的训练集、验证集和测试集的平均绝对误差(E_(MA))为56.02~129.89 m^(3)/h,平均绝对百分比误差(E_(MAP))为3%~7%,均方根误差(E_(RMS))为82.60~162.61 m^(3)/h,决定系数(R^(2))为0.81~0.98,预测结果较BP神经网络、随机森林(RF)、Transformer等常用预测模型的准确度更高,并且避免了其中多数模型在验证集和测试集中出现的误差过大的情况。研究发现,该耦合模型既具备TCN模型的并行处理优势和多尺度特征提取能力,同时也具备LSTM-SVM组合模型优秀的预测性能和泛化能力,针对研究矿井的工作面涌水量预测与以往模型相比具有一定的优越性和适用性。【结论】研究成果为矿区相似地质条件的矿井涌水量预测提供了新的方法,对该矿地质条件类似的工作面涌水量预测以及防治水工作有一定的现实意义。 展开更多
关键词 矿井水害 煤层顶板 涌水量预测 时域卷积网络 长短期记忆网络 支持向量机 陕西彬长矿区
在线阅读 下载PDF
基于TCN-LSTM模型的页岩气产量预测
19
作者 史峥峥 李道伦 +1 位作者 付宁 张康 《合肥工业大学学报(自然科学版)》 北大核心 2025年第9期1259-1264,1275,共7页
准确预测页岩气产量有助于提前规划生产计划、优化生产方案。现有研究在进行产量预测时,往往需要长时间的生产数据或大量特征数据,当生产时间较短或特征数据较少时,难以准确预测产量。为此,文章提出一种具有注意力机制的时间卷积网络-... 准确预测页岩气产量有助于提前规划生产计划、优化生产方案。现有研究在进行产量预测时,往往需要长时间的生产数据或大量特征数据,当生产时间较短或特征数据较少时,难以准确预测产量。为此,文章提出一种具有注意力机制的时间卷积网络-长短期记忆网络(temporal convolutional network-long short-term memory network,TCN-LSTM)模型。该模型使用3口井生产数据联合训练,其中TCN和LSTM模块分别提取局部和全局特征,然后用全连接网络融合;并使用注意力机制聚焦关键信息,从已有井生产数据中学习流动规律,提高了对初期数据匮乏的新井的预测精度。结果表明,多井联合预测模型在精度和趋势预测方面均优于单井预测模型,基于平均绝对误差(mean absolute error,MAE)评估指标的预测精度提高了约4倍,并且减少了对长周期数据和多特征的依赖,在油藏开发中具有重要意义。 展开更多
关键词 时间卷积网络(TCN) 长短期记忆网络(lstm) 注意力机制 产量预测 多井
在线阅读 下载PDF
融合节假日及天气特征的VMD-SSA-LSTM的高铁站出租车需求预测
20
作者 徐志君 刘曦 +3 位作者 郭媛 王宝锋 吴雅倩 桂小林 《计算机应用》 北大核心 2025年第S1期121-126,共6页
针对高铁站出租车供需失衡的问题,为了快速疏散高铁站旅客,并最大限度地减少旅客和司机的等待时间,提升旅客出行体验,提出一种融合节假日及天气特征的VMD-SSA-LSTM模型预测高铁站出租车需求量。首先,使用变分模态分解(VMD)分解时间序列... 针对高铁站出租车供需失衡的问题,为了快速疏散高铁站旅客,并最大限度地减少旅客和司机的等待时间,提升旅客出行体验,提出一种融合节假日及天气特征的VMD-SSA-LSTM模型预测高铁站出租车需求量。首先,使用变分模态分解(VMD)分解时间序列数据,以解决高铁站客流量不平稳的问题;其次,利用麻雀搜索算法(SSA)简化长短期记忆(LSTM)网络参数的选择过程;最后,结合多种环境特征预测某高铁站的出租车需求。人工采集该高铁站出租车需求的时间序列数据以及天气和节假日等特征后的实验结果表明,构建的融合多种特征的VMD-SSA-LSTM模型的平均绝对误差(MAE)为0.920 3、均方根误差(RMSE)为1.289 5、平均绝对百分比误差(MAPE)为0.187 6%,而拟合优度(R2)为0.991 0,显示所提模型适用于铁路枢纽的出租车需求量短时预测。 展开更多
关键词 出租车需求预测 长短期记忆网络 变分模态分解 麻雀搜索算法
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部