期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于LSTM-文本分析的量化选股模型
1
作者 陆芳玲 赵家玮 夏铁成 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期352-361,共10页
随着国民生活水平的提高,越来越多的人投身于股票市场.为了科学有效地量化选股,通过将量化投资、深度学习及文本分析进行有机结合,来建立量化选股模型.首先,通过文本分析筛选出基本面利好的股票;然后,通过长短期记忆(long-short term me... 随着国民生活水平的提高,越来越多的人投身于股票市场.为了科学有效地量化选股,通过将量化投资、深度学习及文本分析进行有机结合,来建立量化选股模型.首先,通过文本分析筛选出基本面利好的股票;然后,通过长短期记忆(long-short term memory,LSTM)选出预测准确度良好的股票;最后,预测所选出的股票在未来几天的股价趋势.在实证分析方面,通过本模型对部分股票进行运算,选取预测效果较好的股票:赢合科技. 展开更多
关键词 量化选股 文本分析 长短期记忆(long-short term memory lstm) 预测
在线阅读 下载PDF
LSTM逐层多目标优化及多层概率融合的图像描述 被引量:28
2
作者 汤鹏杰 王瀚漓 许恺晟 《自动化学报》 EI CSCD 北大核心 2018年第7期1237-1249,共13页
使用计算模型对图像进行自动描述属于视觉高层理解,要求模型不仅能够对图像中的目标及场景进行描述,而且能够对目标与目标之间、目标与场景之间的关系进行表达,同时能够生成符合一定语法和结构的自然语言句子.目前基于深度卷积神经网络(... 使用计算模型对图像进行自动描述属于视觉高层理解,要求模型不仅能够对图像中的目标及场景进行描述,而且能够对目标与目标之间、目标与场景之间的关系进行表达,同时能够生成符合一定语法和结构的自然语言句子.目前基于深度卷积神经网络(Convolutional neural network,CNN)和长短时记忆网络(Long-short term memory,LSTM)的方法已成为解决该问题的主流,虽然已取得巨大进展,但存在LSTM层次不深,难以优化的问题,导致模型性能难以提升,生成的描述句子质量不高.针对这一问题,受深度学习思想的启发,本文设计了基于逐层优化的多目标优化及多层概率融合的LSTM(Multi-objective layer-wise optimization/multi-layer probability fusion LSTM,MLO/MLPF-LSTM)模型.模型中首先使用浅层LSTM进行训练,收敛之后,保留原LSTM模型中的分类层及目标函数,并添加新的LSTM层及目标函数重新对模型进行训练,对模型原有参数进行微调;在测试时,将多个分类层使用Softmax函数进行变换,得到每层对单词的预测概率分值,然后将多层的概率分值进行加权融合,得到单词的最终预测概率.在MSCOCO和Flickr30K两个数据集上实验结果显示,该模型性能显著,在多个统计指标上均超过了同类其他方法. 展开更多
关键词 图像描述 多目标优化 逐层优化 多层融合 长短时记忆网络 卷积神经网络
在线阅读 下载PDF
基于LSTM循环神经网络的电池SOC预测方法 被引量:15
3
作者 耿攀 许梦华 薛士龙 《上海海事大学学报》 北大核心 2019年第3期120-126,共7页
针对锂离子电池荷电状态(state of charge,SOC)预测问题,利用长短期记忆(long short-term memory,LSTM)循环神经网络建立电池SOC预测模型。在恒阻放电情况下,将电池输出电流、输出电压和电池表面温度作为模型的主要输入,使用训练样本对... 针对锂离子电池荷电状态(state of charge,SOC)预测问题,利用长短期记忆(long short-term memory,LSTM)循环神经网络建立电池SOC预测模型。在恒阻放电情况下,将电池输出电流、输出电压和电池表面温度作为模型的主要输入,使用训练样本对神经网络进行训练,使用验证样本进行验证。结果表明,用该方法进行电池SOC预测时可使最大绝对误差仅为1.96%,均方根误差为0.986%,可行性被验证。分析神经网络隐含层中不同的神经元个数对预测结果的影响,对比不同批大小情况下训练出的神经网络的预测误差。将隐含层分别设置为1至3个LSTM细胞核,得到不同条件下神经网络的预测误差。结果为电池SOC预测的神经网络模型的隐含层神经元个数、批大小和LSTM细胞核个数的设定提供参考。 展开更多
关键词 锂离子电池 荷电状态(SOC) 电动汽车 长短期记忆(lstm) 循环神经网络
在线阅读 下载PDF
基于对抗迁移学习模型的环境类虚假投诉检测
4
作者 范青武 韩华政 孙晓宁 《北京工业大学学报》 CAS CSCD 北大核心 2023年第9期999-1006,共8页
为实现环境类虚假投诉举报检测,提出一种基于对抗迁移学习方法的虚假投诉举报检测模型。首先,以长短期记忆(long-short term memory,LSTM)网络为特征抽取器抽取微博谣言(源域)和投诉举报文本(目标域)的共享特征;然后,使用对抗学习方法... 为实现环境类虚假投诉举报检测,提出一种基于对抗迁移学习方法的虚假投诉举报检测模型。首先,以长短期记忆(long-short term memory,LSTM)网络为特征抽取器抽取微博谣言(源域)和投诉举报文本(目标域)的共享特征;然后,使用对抗学习方法进行领域适配,将源域特征和目标域特征进行特征对齐;最后,由分类器输出分类结果,并由分类损失和领域适配损失共同更新网络参数。通过模型对比实验和消融实验可知,模型的F_(1)达到了79.61%。结果表明,对抗迁移学习模型具有较好的性能,适合应用在环境类虚假投诉举报检测任务中。 展开更多
关键词 投诉举报 文本分类 迁移学习 生成对抗网络 深度学习 长短期记忆(long-short term memory lstm)网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部