随着国民生活水平的提高,越来越多的人投身于股票市场.为了科学有效地量化选股,通过将量化投资、深度学习及文本分析进行有机结合,来建立量化选股模型.首先,通过文本分析筛选出基本面利好的股票;然后,通过长短期记忆(long-short term me...随着国民生活水平的提高,越来越多的人投身于股票市场.为了科学有效地量化选股,通过将量化投资、深度学习及文本分析进行有机结合,来建立量化选股模型.首先,通过文本分析筛选出基本面利好的股票;然后,通过长短期记忆(long-short term memory,LSTM)选出预测准确度良好的股票;最后,预测所选出的股票在未来几天的股价趋势.在实证分析方面,通过本模型对部分股票进行运算,选取预测效果较好的股票:赢合科技.展开更多
为实现环境类虚假投诉举报检测,提出一种基于对抗迁移学习方法的虚假投诉举报检测模型。首先,以长短期记忆(long-short term memory,LSTM)网络为特征抽取器抽取微博谣言(源域)和投诉举报文本(目标域)的共享特征;然后,使用对抗学习方法...为实现环境类虚假投诉举报检测,提出一种基于对抗迁移学习方法的虚假投诉举报检测模型。首先,以长短期记忆(long-short term memory,LSTM)网络为特征抽取器抽取微博谣言(源域)和投诉举报文本(目标域)的共享特征;然后,使用对抗学习方法进行领域适配,将源域特征和目标域特征进行特征对齐;最后,由分类器输出分类结果,并由分类损失和领域适配损失共同更新网络参数。通过模型对比实验和消融实验可知,模型的F_(1)达到了79.61%。结果表明,对抗迁移学习模型具有较好的性能,适合应用在环境类虚假投诉举报检测任务中。展开更多
文摘随着国民生活水平的提高,越来越多的人投身于股票市场.为了科学有效地量化选股,通过将量化投资、深度学习及文本分析进行有机结合,来建立量化选股模型.首先,通过文本分析筛选出基本面利好的股票;然后,通过长短期记忆(long-short term memory,LSTM)选出预测准确度良好的股票;最后,预测所选出的股票在未来几天的股价趋势.在实证分析方面,通过本模型对部分股票进行运算,选取预测效果较好的股票:赢合科技.
文摘为实现环境类虚假投诉举报检测,提出一种基于对抗迁移学习方法的虚假投诉举报检测模型。首先,以长短期记忆(long-short term memory,LSTM)网络为特征抽取器抽取微博谣言(源域)和投诉举报文本(目标域)的共享特征;然后,使用对抗学习方法进行领域适配,将源域特征和目标域特征进行特征对齐;最后,由分类器输出分类结果,并由分类损失和领域适配损失共同更新网络参数。通过模型对比实验和消融实验可知,模型的F_(1)达到了79.61%。结果表明,对抗迁移学习模型具有较好的性能,适合应用在环境类虚假投诉举报检测任务中。