期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Navigation jamming signal recognition based on long short-term memory neural networks 被引量:3
1
作者 FU Dong LI Xiangjun +2 位作者 MOU Weihua MA Ming OU Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期835-844,共10页
This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces ... This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces the long shortterm memory(LSTM) neural network into the recognition algorithm and combines the time-frequency(TF) analysis for signal preprocessing. Five kinds of navigation jamming signals including white Gaussian noise(WGN), pulse jamming, sweep jamming, audio jamming, and spread spectrum jamming are used as input for training and recognition. Since the signal parameters and quantity are unknown in the actual scenario, this work builds a data set containing multiple kinds and parameters jamming to train the TF-LSTM. The performance of this method is evaluated by simulations and experiments. The method has higher recognition accuracy and better robustness than the existing methods, such as LSTM and the convolutional neural network(CNN). 展开更多
关键词 satellite navigation jamming recognition time-frequency(TF)analysis long short-term memory(lstm)
在线阅读 下载PDF
基于BO-LSTM的排露沟流域气象水文演变分析及径流预测模型建立 被引量:1
2
作者 康永德 陈佩 +3 位作者 许尔文 任小凤 敬文茂 张娟 《水利水电技术(中英文)》 北大核心 2025年第4期1-11,共11页
【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温... 【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温对径流量变化的影响,并建立了BO-LSTM排露沟流域径流预测模型。【结果】结果显示:(1)2000—2019年排露沟流域降水、气温和径流呈现两段式的上升趋势,分界点在2010年,降水和径流,第一阶段上升趋势均高于第二阶段,斜率依次为10.74、3.16;气温则相反,第二阶段高于第一阶段,斜率为0.11。并且降水、气温和径流的MK突变检验z值均大于0。(2)降水量在5—10月对径流量变化的贡献率较大;而气温在12月—次年4月对径流变化的贡献率大。(3)排露沟流域气温主要有3 a、14 a两个主周期,其中第一主周期为14 a;径流存在19 a、9 a和3 a三个主周期,其中第一主周期为19 a;降水主要存在4 a、11 a两个主周期,第一主周期为11 a。(4)BO-LSTM排露沟径流预测模型,精度R 2为0.63,均方根误差为14047 m 3,模型在径流量较小月份的预测精度大于径流量较大的月份。【结论】近20年来排露沟流域的降水、气温及径流均呈上升趋势;排露沟流域径流、降水及气温均存在明显的周期性;气温和降水是影响排露沟流域径流的重要因素;径流预测模型可以适用于排露沟流域。上述研究结果为祁连山水资源效应研究和内陆河流域水资源预测提供科学支撑。 展开更多
关键词 水文 水资源 径流演变 排露沟流域 径流预测 神经网络 lstm(long short-term memory)模型 贝叶斯优化算法
在线阅读 下载PDF
基于差分处理的EMD-LSTM短时空中交通流量预测
3
作者 周睿 邱爽 +2 位作者 孟双杰 李明 张强 《科学技术与工程》 北大核心 2025年第2期842-849,共8页
随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(emp... 随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(empirical mode decomposition,EMD)和长短期记忆(long short-term memory,LSTM)相结合的短时空中交通流量预测模型。首先,该模型对短时空中交通流量序列进行经验模态分解;其次,为了提高预测精度,运用数据差分对时间序列进行平稳化处理;最后,将平稳处理后的序列分别输入LSTM网络模型进行预测,经过数据重构,得到最终的短时流量预测值。利用郑州新郑国际机场数据进行了实验验证,结果表明,该模型预测精度和拟合程度的典型指标RSME、MAE、R^(2)分别为0.29%,0.08%、96.40%,相较于其他方法,预测精度大幅度提高,可以为短时空中交通流量预测提供有益参考。 展开更多
关键词 空中交通流量管理 短时空中交通流量预测 经验模态分解(empirical mode decomposition EMD) 数据差分处理(data differential processing) 长短期记忆(long short-term memory lstm)
在线阅读 下载PDF
利用长短期记忆网络LSTM对赤道太平洋海表面温度短期预报 被引量:2
4
作者 张桃 林鹏飞 +6 位作者 刘海龙 郑伟鹏 王鹏飞 徐天亮 李逸文 刘娟 陈铖 《大气科学》 CSCD 北大核心 2024年第2期745-754,共10页
海表面温度作为海洋中一个最重要的变量,对全球气候、海洋生态等有很大的影响,因此十分有必要对海表面温度(SST)进行预报。深度学习具备高效的数据处理能力,但目前利用深度学习对整个赤道太平洋的SST短期预报及预报技巧的研究仍较少。... 海表面温度作为海洋中一个最重要的变量,对全球气候、海洋生态等有很大的影响,因此十分有必要对海表面温度(SST)进行预报。深度学习具备高效的数据处理能力,但目前利用深度学习对整个赤道太平洋的SST短期预报及预报技巧的研究仍较少。本文基于最优插值海表面温度(OISST)的日平均SST数据,利用长短期记忆(LSTM)网络构建了未来10天赤道太平洋(10°S~10°N,120°E~80°W)SST的逐日预报模型。LSTM预报模型利用1982~2010年的观测数据进行训练,2011~2020年的观测数据作为初值进行预报和检验评估。结果表明:赤道太平洋东部地区预报均方根误差(RMSE)大于中、西部,东部预报第1天RMSE为0.6℃左右,而中、西部均小于0.3℃。在不同的年际变化位相,预报RMSE在拉尼娜出现时期最大,正常年份次之,厄尔尼诺时期最小,RMSE在拉尼娜时期比在厄尔尼诺时期可达20%。预报偏差整体表现为东正、西负。相关预报技巧上,中部最好,可预报天数基本为10天以上,赤道冷舌附近可预报天数为4~7天,赤道西边部分地区可预报天数为3天。预报模型在赤道太平洋东部地区各月份预报技巧普遍低于西部地区,相比较而言各区域10、11月份预报技巧最低。总的来说,基于LSTM构建的SST预报模型能很好地捕捉到SST在时序上的演变特征,在不同案例中预报表现良好。同时该预报模型依靠数据驱动,能迅速且较好地预报未来10天以内的日平均SST的短期变化。 展开更多
关键词 海表面温度 lstm (long short-term memory) 短期预报 赤道太平洋
在线阅读 下载PDF
基于相关性检验的VMD-LSTM耦合模型月径流模拟研究 被引量:4
5
作者 刘声洪 SOOMRO Shan-E-Hyder +3 位作者 李颖 李英海 程雄 杨少康 《水资源与水工程学报》 CSCD 北大核心 2024年第2期71-82,共12页
近年来,极端强降雨和干旱事件频发,流域水文过程的不确定性变化加剧,使得流域中长期径流预测的难度增加。为提升LSTM(长短期记忆神经网络)模型对径流时序变化的捕捉及拟合能力,以博阳河流域为研究区域,选取月降雨、蒸发及流量数据,利用V... 近年来,极端强降雨和干旱事件频发,流域水文过程的不确定性变化加剧,使得流域中长期径流预测的难度增加。为提升LSTM(长短期记忆神经网络)模型对径流时序变化的捕捉及拟合能力,以博阳河流域为研究区域,选取月降雨、蒸发及流量数据,利用VMD(变分模态分解)和相关性检验,排除无关频率分量对LSTM模型规律学习的干扰,以达到模型输入优选的目的;此外,还考虑了VMD与LSTM模型的不同耦合方式对模型精度和稳定性的影响,最终优选出二者兼具的VMD-LSTM月径流耦合模式。结果表明:VMD-LSTM耦合模型可显著提升模拟精度,但在模型稳定性方面有所欠缺;而基于相关性检验的VMD-LSTM耦合模型不仅能够进一步提高模型精度,并且在模型的稳定性方面也有所改进。在基于相关性检验的VMD-LSTM耦合模型的不同耦合方式对比中,对输入、输出均进行VMD分解且对输入变量进行优选的D_(1)耦合方案的模拟效果最好,其60次模拟计算的NSE均为0.98以上且稳定性极佳;另外,在分析方案D_(1)的可解释性时发现历史径流对于LSTM模型的影响要比降雨和蒸发大。该研究结论可为流域水资源管理提供精准可信的中长期径流模拟成果。 展开更多
关键词 相关性检验 变分模态分解 长短期记忆神经网络 径流模拟 博阳河流域
在线阅读 下载PDF
Real-time UAV path planning based on LSTM network 被引量:2
6
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(lstm)
在线阅读 下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM 被引量:1
7
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) long short-term memory(lstm) Layer counting Multi-source fusion
在线阅读 下载PDF
Track correlation algorithm based on CNN-LSTM for swarm targets
8
作者 CHEN Jinyang WANG Xuhua CHEN Xian 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期417-429,共13页
The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms... The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets. 展开更多
关键词 track correlation correlation accuracy rate swarm target convolutional neural network(CNN) long short-term memory(lstm)neural network
在线阅读 下载PDF
煤矿井下供水管道泄漏孔径识别与定位
9
作者 杜京义 陈镇 +3 位作者 张嘉伟 李晨 高瑞 王鹏 《科学技术与工程》 北大核心 2025年第8期3296-3303,共8页
为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使... 为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使用VMD对压力信号进行降噪处理;采用卷积神经网络(convolutional neural networks,CNN)提取压力及流量信号的深层特征序列,长短时记忆网络(long short-term memory,LSTM)提取深层特征序列的时序特征,进行泄漏孔径识别与定位。实验结果表明:经过参数优化的变分模态分解,相较卡尔曼滤波、均值滤波、低通滤波在均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、信噪比(signal to noise ratio,SNR)、归一化互相关系数(normalized cross correlation,NCC)上均有提高,表明其能够有效降低噪声成分,保留有效信号;CNN-LSTM相较LSTM,在泄漏点定位中,MAE降低了65.97%,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了61.22%,RMSE降低了59.11%。在泄漏孔径识别中,MAE降低了12.04%,MAPE降低了22.45%,RMSE降低了3.29%,证明CNN-LSTM可以充分利用管道压力及流量信号的空间及时间特征进行泄漏位置及孔径的识别,其检测效果相较LSTM更加准确和稳定。 展开更多
关键词 变分模态分解(VMD) 卷积神经网络(CNN) 长短时记忆网络(lstm) 模态能量熵 遗传算法(GA) 包络熵
在线阅读 下载PDF
结合注意力机制与LSTM的短期风电功率预测模型 被引量:19
10
作者 廖雪超 伍杰平 陈才圣 《计算机工程》 CAS CSCD 北大核心 2022年第9期286-297,304,共13页
风力发电预测在电力系统的运行中发挥着重要作用。现有风电功率的短期预测模型因风速的复杂性和随机性,难以确定风速与风电功率的非线性映射关系,导致预测精度降低。提出一种结合变分模态分解、双阶段注意力机制、误差修正模块与深度学... 风力发电预测在电力系统的运行中发挥着重要作用。现有风电功率的短期预测模型因风速的复杂性和随机性,难以确定风速与风电功率的非线性映射关系,导致预测精度降低。提出一种结合变分模态分解、双阶段注意力机制、误差修正模块与深度学习算法的短期风电功率预测模型。通过对原始数据进行互信息特征选择,获得与风电功率相关性较强的特征,并对其进行信号预处理,利用变分模态分解对多维特征序列进行分解,得到具有一定中心频率的模态分量,以降低各个特征序列的复杂性和非平稳性。采用基于双阶段注意力机制与编解码架构的长短时记忆(LSTM)神经网络对模态分量进行训练与预测,得到初始预测误差。在此基础上,利用误差修正模块对初始预测误差进行变分模态分解和修正,从而提高模型的预测精度。实验结果表明,与自回归移动平均模型、标准编解码结构的LSTM模型相比,该预测模型的平均绝对误差最高可降低约87%,具有较优的预测性能。 展开更多
关键词 短期风电功率预测 变分模态分解 长短时记忆神经网络 注意力机制 误差修正
在线阅读 下载PDF
基于固定窗漂移检测的MSWI过程CO排放建模
11
作者 汤健 张润雨 +1 位作者 夏恒 乔俊飞 《北京工业大学学报》 北大核心 2025年第8期930-943,共14页
针对城市固废焚烧(municipal solid waste incineration, MSWI)过程中能够表征燃烧过程是否稳定的关键工业参数--一氧化碳(carbon monoxide, CO)排放浓度的动态时变特性,提出基于固定窗漂移检测的MSWI过程CO排放建模方法。首先,基于历... 针对城市固废焚烧(municipal solid waste incineration, MSWI)过程中能够表征燃烧过程是否稳定的关键工业参数--一氧化碳(carbon monoxide, CO)排放浓度的动态时变特性,提出基于固定窗漂移检测的MSWI过程CO排放建模方法。首先,基于历史数据集采用k-means算法获取典型样本池(typical sample pool, TSP),构建基于长短期记忆(long short-term memory, LSTM)神经网络的离线预测模型和基于核主成分分析(kernel principal component analysis, KPCA)的漂移指标计算模型。然后,针对每个在线采集样本,在预设定固定窗口未填满时基于历史LSTM神经网络模型进行在线预测,在预设定固定窗口填满时采用历史KPCA模型进行漂移检测。最后,利用指标霍特林统计量T2和平方预测误差(squared prediction error, SPE)判断是否产生漂移。若未产生漂移,则返回至新窗口期;若产生漂移,则合并历史数据和漂移数据以更新TSP、LSTM模型和KPCA模型。工业现场实际数据的仿真验证了所提方法的合理性和有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 一氧化碳(carbon monoxide CO)排放 概念漂移检测 典型样本池(typical sample pool TSP) 长短期记忆(long short-term memory lstm)神经网络 核主成分分析(kernel principal component analysis KPCA)
在线阅读 下载PDF
跨模态文本信息增强的多模态情感分析模型
12
作者 王艺涵 路翀 陈忠源 《计算机应用》 北大核心 2025年第7期2237-2244,共8页
近年来,利用文本、视觉和音频数据分析视频中说话者情感的多模态情感分析(MSA)引起了广泛关注。然而,不同模态在情感分析中的贡献大不相同。通常,文本中包含的信息更加直观,因此寻求一种用于增强文本在情感分析中作用的策略显得尤为重... 近年来,利用文本、视觉和音频数据分析视频中说话者情感的多模态情感分析(MSA)引起了广泛关注。然而,不同模态在情感分析中的贡献大不相同。通常,文本中包含的信息更加直观,因此寻求一种用于增强文本在情感分析中作用的策略显得尤为重要。针对这一问题,提出一种跨模态文本信息增强的多模态情感分析模型(MSAMCTE)。首先,使用BERT(Bidirectional Encoder Representations from Transformers)预训练模型提取文本特征,并使用双向长短期记忆(Bi-LSTM)网络对预处理后的音频和视频特征进行进一步处理;其次,通过基于文本的交叉注意力机制,将文本信息融入情感相关的非语言表示中,以学习面向文本的成对跨模态映射,从而获得有效的统一多模态表示;最后,使用融合特征进行情感分析。实验结果表明,与最优的基线模型——文本增强Transformer融合网络(TETFN)相比,MSAM-CTE在数据集CMU-MOSI(Carnegie Mellon University Multimodal Opinion Sentiment Intensity)上的平均绝对误差(MAE)和皮尔逊相关系数(Corr)分别降低了2.6%和提高了0.1%;在数据集CMU-MOSEI(Carnegie Mellon University Multimodal Opinion Sentiment and Emotion Intensity)上的两个指标分别降低了3.8%和提高了1.7%,验证了MSAM-CTE在情感分析中的有效性。 展开更多
关键词 多模态情感分析 文本信息增强 交叉注意力机制 双向长短期记忆网络 跨模态信息融合
在线阅读 下载PDF
结合LSTM与CNN的野外车辆声信号分类 被引量:3
13
作者 李翔 王艳 李宝清 《压电与声光》 CAS 北大核心 2021年第3期379-384,共6页
针对野外环境下微声传感器采集的小型轮式车、大型轮式车和履带车3种车辆声信号受风噪影响严重、分类性能较低的问题,提出了一种长短时记忆网络(LSTM)与多尺度、多层次特征融合卷积神经网络(CNN)相结合的分类算法——野外车辆识别算法(F... 针对野外环境下微声传感器采集的小型轮式车、大型轮式车和履带车3种车辆声信号受风噪影响严重、分类性能较低的问题,提出了一种长短时记忆网络(LSTM)与多尺度、多层次特征融合卷积神经网络(CNN)相结合的分类算法——野外车辆识别算法(FVNet)。该算法先采用一层LSTM网络提取声信号的时序特征,充分利用声信号的长时依赖关系;再用CNN并行提取多尺度特征,避免网络加深过程中特征的流失;引入通道注意力机制进行多尺度和多层次特征融合,增强多尺度、多层次关键特征信息;最后在相同数据集上进行验证。实验结果表明,FVNet算法对3种车辆的总识别率可达94.95%,与传统方法相比,其总识别率提高了14.61%,取得了较好的分类效果。 展开更多
关键词 车辆声信号分类 长短时记忆网络(lstm) 卷积神经网络(CNN) 并行多尺度特征提取 通道注意力机制 特征融合
在线阅读 下载PDF
基于简化型LSTM神经网络的时间序列预测方法 被引量:19
14
作者 李文静 王潇潇 《北京工业大学学报》 CAS CSCD 北大核心 2021年第5期480-488,共9页
针对标准长短期记忆(long short-term memory,LSTM)神经网络用于时间序列预测具有耗时长、复杂度高等问题,提出简化型LSTM神经网络并应用于时间序列预测.首先,通过耦合输入门与遗忘门实现对标准LSTM神经网络的结构简化;其次,从门结构控... 针对标准长短期记忆(long short-term memory,LSTM)神经网络用于时间序列预测具有耗时长、复杂度高等问题,提出简化型LSTM神经网络并应用于时间序列预测.首先,通过耦合输入门与遗忘门实现对标准LSTM神经网络的结构简化;其次,从门结构控制方程中消除输入信号与偏差实现进一步精简;然后,采用梯度下降算法更新简化型LSTM神经网络的参数;最后,通过2个时间序列基准数据集及污水处理过程出水生化需氧量(biochemical oxygen demand,BOD)质量浓度预测进行实验验证.结果表明:在不显著降低预测精度的情况下,所设计的模型能够缩短训练时间,减少LSTM神经网络的计算复杂度,实现时间序列的预测. 展开更多
关键词 时间序列预测 长短期记忆(long short-term memory lstm)神经网络 门耦合 参数精简 梯度下降算法 污水处理过程
在线阅读 下载PDF
基于改进LSTM网络的犯罪态势预测方法 被引量:8
15
作者 黄娜 何泾沙 +1 位作者 孙靖超 朱娜斐 《北京工业大学学报》 CAS CSCD 北大核心 2019年第8期742-748,共7页
为了利用历史数据对犯罪态势进行更加准确的预测,提出一种基于改进长短期记忆(long short-term memory,LSTM)网络的犯罪态势预测方法.首先统计某区域在每一个时间步长内发生犯罪事件的数量,作为一个时间步长值,再由多个时间步长组成一... 为了利用历史数据对犯罪态势进行更加准确的预测,提出一种基于改进长短期记忆(long short-term memory,LSTM)网络的犯罪态势预测方法.首先统计某区域在每一个时间步长内发生犯罪事件的数量,作为一个时间步长值,再由多个时间步长组成一个时间序列,结合均方差滤波对统计的序列数据做标准化处理.其次建立包括输入层、隐藏层、全连接层和输出层的LSTM网络,在训练阶段将以上一段时间步长的预测值作为输入改为以实际值作为输入,根据修正的网络参数循环进行后续的预测,再对网络输出进行标准化逆处理得到预测结果.将2016年美国洛杉矶地区统计的全部犯罪记录作为实验数据,得到了态势拟合度较高的实验结果,与改进前相比,预测结果的均方根误差(root mean square error,RMSE)从139.65降低到了85.88,验证了基于改进LSTM网络对犯罪态势预测的有效性和准确性,并且通过与其他现有方法的对比,进一步证明了本方法在时间性能和准确性上的优越性. 展开更多
关键词 深度学习 长短期记忆(long short-term memory lstm)网络 时间序列分析 电子取证 警用数据分析 犯罪态势
在线阅读 下载PDF
LSTM-DPPO based deep reinforcement learning controller for path following optimization of unmanned surface vehicle 被引量:3
16
作者 XIA Jiawei ZHU Xufang +1 位作者 LIU Zhong XIA Qingtao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1343-1358,共16页
To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal po... To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal policy opti-mization(DPPO)algorithm,which is a modified actor-critic-based type of reinforcement learning algorithm,is adapted to improve the controller performance in repeated trials.The LSTM network structure is introduced to solve the strong temporal cor-relation USV control problem.In addition,a specially designed path dataset,including straight and curved paths,is established to simulate various sailing scenarios so that the reinforcement learning controller can obtain as much handling experience as possible.Extensive numerical simulation results demonstrate that the proposed method has better control performance under missions involving complex maneuvers than trained with limited scenarios and can potentially be applied in practice. 展开更多
关键词 unmanned surface vehicle(USV) deep reinforce-ment learning(DRL) path following path dataset proximal po-licy optimization long short-term memory(lstm)
在线阅读 下载PDF
基于VMD和时空网络变分自编码器的负荷聚类
17
作者 陆绮荣 王泽鑫 +1 位作者 叶颖雅 邹健 《科学技术与工程》 北大核心 2024年第14期5831-5838,共8页
为了解决用户用电负荷曲线数据维度高、特征提取困难以及序列存在信号模态混叠的问题,提出了使用变分模态分解(variational modal decomposition,VMD)和改进基于时空网络的变分自编码器(variational auto-encoder,VAE)对电力负荷曲线进... 为了解决用户用电负荷曲线数据维度高、特征提取困难以及序列存在信号模态混叠的问题,提出了使用变分模态分解(variational modal decomposition,VMD)和改进基于时空网络的变分自编码器(variational auto-encoder,VAE)对电力负荷曲线进行特征提取。通过模态分解得到信号的固有模态,对模态重构得到时序特征较明显的序列信号。再通过长短期记忆网络(long short-term memory network,LSTM)和卷积网络(convolutional neural network,CNN)组成的时空变分自编码器进行潜在特征提取,并构建网络分类器来联合损失优化自编码器模型。最后使用Minibatchkmeans算法聚类并计算聚类中心。使用UCI数据集中葡萄牙居民用电量作为实验数据,通过实验结果表明经模态分解后通过降维再聚类的算法在戴维斯丁堡指数(Davies-Bouldin index,DBI)和轮廓系数(silhouette coefficient,SC)上表现出较好效果。 展开更多
关键词 负荷聚类 变分模态分解 长短期记忆网络 卷积神经网络 变分自编码器
在线阅读 下载PDF
基于多任务学习与层叠Transformer的多模态情感分析模型 被引量:8
18
作者 陈巧红 孙佳锦 +1 位作者 漏杨波 方志坚 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第12期2421-2429,共9页
针对单模态特征提取存在的模态特征异质性难以保留问题和跨模态特征融合存在的特征冗余问题,基于跨模态Transformer,提出新的多模态情感分析模型(MTSA).使用长短时记忆(LSTM)与多任务学习框架提取单模态上下文语义信息,通过累加辅助模... 针对单模态特征提取存在的模态特征异质性难以保留问题和跨模态特征融合存在的特征冗余问题,基于跨模态Transformer,提出新的多模态情感分析模型(MTSA).使用长短时记忆(LSTM)与多任务学习框架提取单模态上下文语义信息,通过累加辅助模态任务损失以筛除噪声并保留模态特征异质性.使用多任务门控机制调整跨模态特征融合,通过层叠Transformer结构融合文本、音频与视觉模态特征,提升融合深度,避免融合特征冗余.在2个公开数据集MOSEI和SIMS上的实验结果表明,相较于其他先进模型,MTSA的整体性能表现更好,二分类准确率分别达到83.51%和84.18%. 展开更多
关键词 多模态情感分析 长短时记忆(lstm) TRANSFORMER 多任务学习 跨模态特征融合
在线阅读 下载PDF
基于深度长短记忆模型的民航安保事件分析 被引量:10
19
作者 冯文刚 《中国安全科学学报》 CAS CSCD 北大核心 2021年第9期1-7,共7页
为辅助公安民警分析民航安保事件,采用深度长短记忆(LSTM)模型,研究民航安保事件行为主体识别问题。通过搭建民航安保事件数据库,对民航安保事件概念信息进行多模态信息表示,提取安保事件时序特征,构建深度LSTM模型,进而实现安保事件行... 为辅助公安民警分析民航安保事件,采用深度长短记忆(LSTM)模型,研究民航安保事件行为主体识别问题。通过搭建民航安保事件数据库,对民航安保事件概念信息进行多模态信息表示,提取安保事件时序特征,构建深度LSTM模型,进而实现安保事件行为主体的学习与预测。结果表明:该模型可基于事件时序特征分析事件行为主体,预测精度更优,且在有噪声情况下也可得出良好结果,相关研究成果已在SZX机场成功应用。 展开更多
关键词 民航安保事件 深度长短记忆(lstm)模型 行为主体 多模态 时序特征
在线阅读 下载PDF
基于长短记忆与信息注意的视频–脑电交互协同情感识别 被引量:7
20
作者 刘嘉敏 苏远歧 +1 位作者 魏平 刘跃虎 《自动化学报》 EI CSCD 北大核心 2020年第10期2137-2147,共11页
基于视频–脑电信号交互协同的情感识别是人机交互重要而具有挑战性的研究问题.本文提出了基于长短记忆神经网络(Long-short term memory,LSTM)和注意机制(Attention mechanism)的视频–脑电信号交互协同的情感识别模型.模型的输入是实... 基于视频–脑电信号交互协同的情感识别是人机交互重要而具有挑战性的研究问题.本文提出了基于长短记忆神经网络(Long-short term memory,LSTM)和注意机制(Attention mechanism)的视频–脑电信号交互协同的情感识别模型.模型的输入是实验参与人员观看情感诱导视频时采集到的人脸视频与脑电信号,输出是实验参与人员的情感识别结果.该模型在每一个时间点上同时提取基于卷积神经网络(Convolution neural network,CNN)的人脸视频特征与对应的脑电信号特征,通过LSTM进行融合并预测下一个时间点上的关键情感信号帧,直至最后一个时间点上计算出情感识别结果.在这一过程中,该模型通过空域频带注意机制计算脑电信号α波,β波与θ波的重要度,从而更加有效地利用脑电信号的空域关键信息;通过时域注意机制,预测下一时间点上的关键信号帧,从而更加有效地利用情感数据的时域关键信息.本文在MAHNOB-HCI和DEAP两个典型数据集上测试了所提出的方法和模型,取得了良好的识别效果.实验结果表明本文的工作为视频–脑电信号交互协同的情感识别问题提供了一种有效的解决方法. 展开更多
关键词 情感识别 长短记忆神经网络 时–空注意机制 多模态信号融合
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部