期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
1
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm convolutional Neural network long short-term memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
基于LSTM-SAFCN模型的生物质锅炉NO_(x)排放浓度预测 被引量:1
2
作者 何德峰 刘明裕 +2 位作者 孙芷菲 王秀丽 李廉明 《高技术通讯》 CAS 北大核心 2024年第1期92-100,共9页
针对生物质锅炉燃烧过程的动态特性,提出一种改进的长短期记忆-自注意力机制全卷积神经网络(LSTM-SAFCN)模型用于预测NO_(x)排放浓度。首先利用完全自适应噪声集合经验模态分解法(CEEMDAN)对数据进行预处理,消除数据噪声对NO_(x)排放浓... 针对生物质锅炉燃烧过程的动态特性,提出一种改进的长短期记忆-自注意力机制全卷积神经网络(LSTM-SAFCN)模型用于预测NO_(x)排放浓度。首先利用完全自适应噪声集合经验模态分解法(CEEMDAN)对数据进行预处理,消除数据噪声对NO_(x)排放浓度预测的影响;其次融合自注意力机制与长短时记忆-全卷积神经网络(LSTM-FCN)进行特征提取与预测建模,该拓展方法能够同时兼顾时间序列数据的局部细节与长期趋势特征;最后,利用生物质热电联产系统的实际运行数据验证了所提算法的有效性。 展开更多
关键词 生物质锅炉 NO_(x)排放浓度预测 经验模态分解 长短时记忆-全卷积神经网络(lstm-fcn) 自注意力机制
在线阅读 下载PDF
一种基于全卷积神经网络的空中目标战术意图识别模型 被引量:3
3
作者 李乐民 宋亚飞 +1 位作者 王鹏 王科 《空军工程大学学报》 CSCD 北大核心 2024年第5期98-106,共9页
针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战... 针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战意图数据的时序特征。通过消融实验和对比实验结果表明,MLSTM-FCN模型在意图识别准确率、反应速度和抗干扰能力方面明显优于现有的空中目标意图识别模型,取得了sota的结果,为指挥员在进行空中作战决策时提供更有效的依据。 展开更多
关键词 意图识别 空中目标 深度学习 全卷积网络 长短记忆神经网络 压缩与激励模块
在线阅读 下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM 被引量:1
4
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) long short-term memory(LSTM) Layer counting Multi-source fusion
在线阅读 下载PDF
Track correlation algorithm based on CNN-LSTM for swarm targets
5
作者 CHEN Jinyang WANG Xuhua CHEN Xian 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期417-429,共13页
The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms... The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets. 展开更多
关键词 track correlation correlation accuracy rate swarm target convolutional neural network(CNN) long short-term memory(LSTM)neural network
在线阅读 下载PDF
基于FCN-LSTM的工业烟尘图像分割 被引量:4
6
作者 张俊鹏 刘辉 李清荣 《计算机工程与科学》 CSCD 北大核心 2021年第5期907-916,共10页
工业生产中常根据林格曼烟气黑度判断工业烟尘的污染等级,一种有效的方式是应用计算机视觉系统对工业烟尘进行监测,其中对烟尘目标进行准确分割是该系统的关键技术。因为工业烟尘具有形状不固定、和云相似度高等特点,现有算法在复杂场... 工业生产中常根据林格曼烟气黑度判断工业烟尘的污染等级,一种有效的方式是应用计算机视觉系统对工业烟尘进行监测,其中对烟尘目标进行准确分割是该系统的关键技术。因为工业烟尘具有形状不固定、和云相似度高等特点,现有算法在复杂场景下对烟尘进行分割时容易受到干扰,分割准确度有待提高。针对这一问题,提出一种基于FCN-LSTM的工业烟尘图像分割方法,在全卷积网络对图像空间特征提取的基础上,使用长短时记忆网络提取图像序列的时间信息,通过烟尘的动态特征对运动的烟尘和背景进行区分,增强复杂场景下的抗干扰能力。实验表明,本文模型相比于全卷积网络,在复杂场景下的抗干扰能力有显著提升,能够有效克服来自云的干扰,对全卷积网络分割结果中易出现干扰点的问题也有改善,IoU指标最高有8.04%的提升。 展开更多
关键词 工业烟尘检测 图像分割 全卷积网络 长短时记忆网络
在线阅读 下载PDF
基于特征融合并行优化模型的电能质量扰动分类方法 被引量:24
7
作者 龚正 邹阳 +3 位作者 金涛 刘宇龙 兰名扬 刘梓强 《中国电机工程学报》 EI CSCD 北大核心 2023年第3期1017-1026,共10页
为了提高对复杂电能质量扰动(power quality disturbances,PQDs)的分类准确率,该文提出一种基于特征融合并行优化模型的PQDs分类方法。该方法以特征融合的方式,使用全卷积神经网络(fully convolutional networks,FCN)和长短期记忆网络(l... 为了提高对复杂电能质量扰动(power quality disturbances,PQDs)的分类准确率,该文提出一种基于特征融合并行优化模型的PQDs分类方法。该方法以特征融合的方式,使用全卷积神经网络(fully convolutional networks,FCN)和长短期记忆网络(long short-term memory,LSTM)并行挖掘PQDs在空间和时序上的高维特征,并提出全局最大池化(global max pooling,GMP)和时间序列重组(time series reshape,TSR)优化,提升模型的分类性能。为了验证所提方法的有效性,该文基于Keras框架搭建分类模型,建立含72类扰动的PQDs数据库并进行仿真实验,所提方法在20dB白噪声环境中平均分类准确率可达92.38%,相较于其他主流深度学习分类方法有更高的噪声鲁棒性和分类准确率。另外,对硬件平台所采样的10类PQDs进行分类测试,共100组实验信号均得到正确分类,该结果进一步验证了所提方法的可靠性。 展开更多
关键词 电能质量扰动 全卷积神经网络 长短期记忆网络 特征融合 并行模型
在线阅读 下载PDF
基于无意调相特性的雷达辐射源个体识别 被引量:16
8
作者 秦鑫 黄洁 +1 位作者 王建涛 陈世文 《通信学报》 EI CSCD 北大核心 2020年第5期104-111,共8页
针对脉内无意调相实现雷达辐射源个体识别时存在的分类模型性能不佳的问题,提出了一种长短时记忆加全卷积网络的雷达辐射源个体识别方法。首先给出了脉内信号相位的简化观测模型,并对观测相位序列进行去斜处理,提取无意调相的含噪估计;... 针对脉内无意调相实现雷达辐射源个体识别时存在的分类模型性能不佳的问题,提出了一种长短时记忆加全卷积网络的雷达辐射源个体识别方法。首先给出了脉内信号相位的简化观测模型,并对观测相位序列进行去斜处理,提取无意调相的含噪估计;然后利用贝塞尔曲线拟合无意调相,降低噪声的影响,获得无意调相更为精确的描述;最后利用长短时记忆加全卷积网络提取无意调相序列的联合特征,实现雷达辐射源个体自动识别。仿真实验以及实测数据实验均验证了所提算法的可行性与有效性,实验结果表明,所提算法识别正确率高、耗时短。 展开更多
关键词 雷达辐射源个体识别 无意调相 贝塞尔曲线 深度学习 长短时记忆加全卷积网络
在线阅读 下载PDF
Situational continuity-based air combat autonomous maneuvering decision-making 被引量:5
9
作者 Jian-dong Zhang Yi-fei Yu +3 位作者 Li-hui Zheng Qi-ming Yang Guo-qing Shi Yong Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期66-79,共14页
In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation eval... In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation evaluation function with strong guidance,then trains the Long Short-Term Memory(LSTM)under the framework of Deep Q Network(DQN)for air combat maneuvering decision-making.Considering the continuity between adjacent situations,the method takes multiple consecutive situations as one input of the neural network.To reflect the difference between adjacent situations,the method takes the difference of situation evaluation value as the reward of reinforcement learning.In different scenarios,the algorithm proposed in this paper is compared with the algorithm based on the Fully Neural Network(FNN)and the algorithm based on statistical principles respectively.The results show that,compared with the FNN algorithm,the algorithm proposed in this paper is more accurate and forwardlooking.Compared with the algorithm based on the statistical principles,the decision-making of the algorithm proposed in this paper is more efficient and its real-time performance is better. 展开更多
关键词 UAV Maneuvering decision-making Situational continuity long short-term memory(LSTM) Deep Q network(DQN) fully neural network(FNN)
在线阅读 下载PDF
基于多元时序特征的恶意域名检测方法 被引量:3
10
作者 姚远 樊昭杉 +1 位作者 王青 陶源 《信息网络安全》 CSCD 北大核心 2023年第11期1-8,共8页
当前,作为主要攻击媒介的恶意域名被广泛滥用于多种网络攻击活动中,针对恶意域名检测中检测特征设计复杂、需要经验知识辅助以及容易被攻击者有针对性绕过等问题,文章提出一种基于多元时序特征的恶意域名检测方法。该方法使用基于融合... 当前,作为主要攻击媒介的恶意域名被广泛滥用于多种网络攻击活动中,针对恶意域名检测中检测特征设计复杂、需要经验知识辅助以及容易被攻击者有针对性绕过等问题,文章提出一种基于多元时序特征的恶意域名检测方法。该方法使用基于融合长短期记忆网络和全卷积神经网络的深度学习模型,分别从客户端请求和域名解析流量中自动化提取多元时序嵌入特征,并学习恶意域名行为的低维时序表示。对比传统的时间统计特征方案或时间序列局部模式判别方案,该方法可以建模长期域名活动模式,从中发现恶意域名区别于正常域名的行为序列,具有更强大的恶意域名检测能力。同时,该方法支持融合多元时序嵌入特征和通用恶意域名检测特征,多维度表征恶意行为信息,提升检测性能以及模型鲁棒性和扩展能力。 展开更多
关键词 恶意域名 长短期记忆网络 全卷积神经网络 多元时序特征 特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部