期刊文献+
共找到254篇文章
< 1 2 13 >
每页显示 20 50 100
State-of-health estimation for fast-charging lithium-ion batteries based on a short charge curve using graph convolutional and long short-term memory networks
1
作者 Yvxin He Zhongwei Deng +4 位作者 Jue Chen Weihan Li Jingjing Zhou Fei Xiang Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期1-11,共11页
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan.... A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively. 展开更多
关键词 Lithium-ion battery State of health estimation Feature extraction Graph convolutional network long short-term memory network
在线阅读 下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
2
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus long short-term memory recurrentneural network
在线阅读 下载PDF
Power entity recognition based on bidirectional long short-term memory and conditional random fields 被引量:8
3
作者 Zhixiang Ji Xiaohui Wang +1 位作者 Changyu Cai Hongjian Sun 《Global Energy Interconnection》 2020年第2期186-192,共7页
With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service respons... With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service response provision.Knowledge graphs are usually constructed based on entity recognition.Specifically,based on the mining of entity attributes and relationships,domain knowledge graphs can be constructed through knowledge fusion.In this work,the entities and characteristics of power entity recognition are analyzed,the mechanism of entity recognition is clarified,and entity recognition techniques are analyzed in the context of the power domain.Power entity recognition based on the conditional random fields (CRF) and bidirectional long short-term memory (BLSTM) models is investigated,and the two methods are comparatively analyzed.The results indicated that the CRF model,with an accuracy of 83%,can better identify the power entities compared to the BLSTM.The CRF approach can thus be applied to the entity extraction for knowledge graph construction in the power field. 展开更多
关键词 Knowledge graph Entity recognition Conditional Random Fields(CRF) Bidirectional long short-term memory(BLSTM)
在线阅读 下载PDF
Logging-while-drilling formation dip interpretation based on long short-term memory 被引量:3
4
作者 SUN Qifeng LI Na +2 位作者 DUAN Youxiang LI Hongqiang TANG Haiquan 《Petroleum Exploration and Development》 CSCD 2021年第4期978-986,共9页
Azimuth gamma logging while drilling(LWD)is one of the important technologies of geosteering but the information of real-time data transmission is limited and the interpretation is difficult.This study proposes a meth... Azimuth gamma logging while drilling(LWD)is one of the important technologies of geosteering but the information of real-time data transmission is limited and the interpretation is difficult.This study proposes a method of applying artificial intelligence in the LWD data interpretation to enhance the accuracy and efficiency of real-time data processing.By examining formation response characteristics of azimuth gamma ray(GR)curve,the preliminary formation change position is detected based on wavelet transform modulus maxima(WTMM)method,then the dynamic threshold is determined,and a set of contour points describing the formation boundary is obtained.The classification recognition model based on the long short-term memory(LSTM)is designed to judge the true or false of stratum information described by the contour point set to enhance the accuracy of formation identification.Finally,relative dip angle is calculated by nonlinear least square method.Interpretation of azimuth gamma data and application of real-time data processing while drilling show that the method proposed can effectively and accurately determine the formation changes,improve the accuracy of formation dip interpretation,and meet the needs of real-time LWD geosteering. 展开更多
关键词 logging while drilling azimuth gamma stratigraphic identification artificial intelligence long short-term memory wavelet transform
在线阅读 下载PDF
Preliminary abnormal electrocardiogram segment screening method for Holter data based on long short-term memory networks 被引量:1
5
作者 Siying Chen Hongxing Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期208-214,共7页
Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the m... Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the majority,it is reasonable to design an algorithm that can automatically eliminate normal data segments as much as possible without missing any abnormal data segments,and then take the left segments to the doctors or the computer programs for further diagnosis.In this paper,we propose a preliminary abnormal segment screening method for Holter data.Based on long short-term memory(LSTM)networks,the prediction model is established and trained with the normal data of a monitored object.Then,on the basis of kernel density estimation,we learn the distribution law of prediction errors after applying the trained LSTM model to the regular data.Based on these,the preliminary abnormal ECG segment screening analysis is carried out without R wave detection.Experiments on the MIT-BIH arrhythmia database show that,under the condition of ensuring that no abnormal point is missed,53.89% of normal segments can be effectively obviated.This work can greatly reduce the workload of subsequent further processing. 展开更多
关键词 ELECTROCARDIOGRAM long short-term memory network kernel density estimation MIT-BIH ARRHYTHMIA database
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
6
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization algorithm Convolutional Neural Network long short-term memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
Device-Free Through-the-Wall Activity Recognition Using Bi-Directional Long Short-Term Memory and WiFi Channel State Information
7
作者 Zi-Yuan Gong Xiang Lu +2 位作者 Yu-Xuan Liu Huan-Huan Hou Rui Zhou 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第4期357-368,共12页
Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated dev... Activity recognition plays a key role in health management and security.Traditional approaches are based on vision or wearables,which only work under the line of sight(LOS)or require the targets to carry dedicated devices.As human bodies and their movements have influences on WiFi propagation,this paper proposes the recognition of human activities by analyzing the channel state information(CSI)from the WiFi physical layer.The method requires only the commodity:WiFi transmitters and receivers that can operate through a wall,under LOS and non-line of sight(NLOS),while the targets are not required to carry dedicated devices.After collecting CSI,the discrete wavelet transform is applied to reduce the noise,followed by outlier detection based on the local outlier factor to extract the activity segment.Activity recognition is fulfilled by using the bi-directional long short-term memory that takes the sequential features into consideration.Experiments in through-the-wall environments achieve recognition accuracy>95%for six common activities,such as standing up,squatting down,walking,running,jumping,and falling,outperforming existing work in this field. 展开更多
关键词 Activity recognition bi-directional long short-term memory(Bi-LSTM) channel state information(CSI) device-free through-the-wall.
在线阅读 下载PDF
基于特征工程与仿生优化算法构建河流溶解氧预测模型 被引量:1
8
作者 李鹏程 苏永军 +1 位作者 王钰 贾悦 《中国农村水利水电》 北大核心 2025年第2期37-44,共8页
河流水体中溶解氧骤增或耗竭均会引发系列环境污染、物种多样性破坏等问题,准确预测河流溶解氧(DO)浓度对河流水环境治理具有重要意义。为提高模型输入特征的可解释性及模型精度,获取河流DO浓度最优预测模型,研究利用黄河流域山西境内... 河流水体中溶解氧骤增或耗竭均会引发系列环境污染、物种多样性破坏等问题,准确预测河流溶解氧(DO)浓度对河流水环境治理具有重要意义。为提高模型输入特征的可解释性及模型精度,获取河流DO浓度最优预测模型,研究利用黄河流域山西境内水质监测站点数据,以双向长短期记忆网络(BiLSTM)为基础,结合卷积神经网络模型(CNN)和注意力机制(Attention Mechanism),基于随机森林模型(RF)进行特征优选,建立RF-CNN-BiLSTM-Attention(RF-CBA)模型,进一步利用吸血水蛭优化算法(BSLO)、黑翅鸢优化算法(BKA)、白鲨优化算法(WSO)等仿生优化算法,构建了BSLO-RF-CBA、BKA-RF-CBA、WSO-RF-CBA共3种优化模型,并与深度学习中CNN-A、LSTM-A、BiLSTM-A、CBA、RF-CBA模型对比,分析得到河流溶解氧预测结果,以平均绝对误差(MAE)、均方根误差(RMSE)、均方误差(MSE)、决定系数(R2)、全绩效指标(GPI)和相对误差(MAPE)评价不同模型精度,结果表明:(1)RF模型通过对影响河流DO特征值进行排序、筛选,可消除冗余特征对水质预测模型的影响,提高预测精度。(2)利用仿生算法优化RF-CBA模型的神经元数量、学习率、正则化系数等参数,模型模拟精度进一步提升,总体上捕捉到了DO波动的时间序列特征,模型表现出强稳定性和泛化能力。(3)BSLO-RF-CBA模型模拟精度最高,对DO变化捕捉能力突出,具有更强的捕获全局依赖关系的能力,推荐用于河流溶解氧预测模型。该模型具备扩展至不同河流溶解氧等污染物浓度预测的能力,为河流水体污染预警与系统化管理提供技术支撑。 展开更多
关键词 溶解氧 双向长短期记忆网络机 特征优选 仿生优化算法 耦合模型
在线阅读 下载PDF
Fault detection and health monitoring of high-power thyristor converter based on long short-term memory in nuclear fusion
9
作者 Ling ZHANG Ge GAO Li JIANG 《Plasma Science and Technology》 2025年第4期64-73,共10页
This research focuses on solving the fault detection and health monitoring of high-power thyristor converter.In terms of the critical role of thyristor converter in nuclear fusion system,a method based on long short-t... This research focuses on solving the fault detection and health monitoring of high-power thyristor converter.In terms of the critical role of thyristor converter in nuclear fusion system,a method based on long short-term memory(LSTM)neural network model is proposed to monitor the operational state of the converter and accurately detect faults as they occur.By sampling and processing a large number of thyristor converter operation data,the LSTM model is trained to identify and detect abnormal state,and the power supply health status is monitored.Compared with traditional methods,LSTM model shows higher accuracy and abnormal state detection ability.The experimental results show that this method can effectively improve the reliability and safety of the thyristor converter,and provide a strong guarantee for the stable operation of the nuclear fusion reactor. 展开更多
关键词 fault detection and health monitoring high-power supply thyristor converter long short-term memory(LSTM) nuclear fusion(Some figures may appear in colour only in the online journal)
在线阅读 下载PDF
基于改进蜣螂算法的空气质量预测建模
10
作者 朱宗玖 冯晓彤 《兰州工业学院学报》 2025年第2期54-61,共8页
为了提高PM2.5浓度的预测精度,提出了一种新的预测模型。首先使用改进的自适应噪声完全经验模态分解对复杂的PM2.5时间序列进行分解,提取出多尺度的本征模态函数;接着利用卷积神经网络捕捉并提取序列中的关键特征,从而增强表征能力;然... 为了提高PM2.5浓度的预测精度,提出了一种新的预测模型。首先使用改进的自适应噪声完全经验模态分解对复杂的PM2.5时间序列进行分解,提取出多尺度的本征模态函数;接着利用卷积神经网络捕捉并提取序列中的关键特征,从而增强表征能力;然后将提取的特征输入到双向长短期记忆网络中进行预测。为了进一步提升模型的性能,采用改进的蜣螂算法对模型进行优化训练。实验结果表明,与传统的单一预测模型相比,所提出的模型在预测性能上有显著提升:预测拟合度提高了17.35%,均方根误差降至0.46μg/m^(3),有效实现了空气质量的精准预测。 展开更多
关键词 PM2.5预测 ICEEMDAN 改进蜣螂算法 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于鲸鱼优化算法改进的SDN网络流量预测模型
11
作者 杨桂芹 刘志琦 +1 位作者 张国庆 张伟霞 《兰州交通大学学报》 2025年第2期19-29,共11页
软件定义网络(SDN)环境下,网络流量基于拓扑结构的复杂性和时间动态特性,导致流量预测面临空间与时间特征带来的双重挑战。为解决这一问题,提出了一种基于鲸鱼算法(WOA)的流量预测模型。该模型通过融合卷积神经网络(CNN)对空间特征的提... 软件定义网络(SDN)环境下,网络流量基于拓扑结构的复杂性和时间动态特性,导致流量预测面临空间与时间特征带来的双重挑战。为解决这一问题,提出了一种基于鲸鱼算法(WOA)的流量预测模型。该模型通过融合卷积神经网络(CNN)对空间特征的提取能力和长短期记忆网络(LSTM)对时间序列特征的捕捉能力,通过WOA优化模型超参数来提高预测精度。最后与CNN-LSTM、PSO-LSSVM等方法进行对比。结果表明,WOA-CNN-LSTM模型在MAE、RMSE和MAPE指标上分别较CNN-LSTM模型相对减少80.91%、69.21%和72.91%,较PSO-LSSVM相对减少40.29%、19.10%和34.76%。实验验证了该模型在SDN流量预测中的良好性能,为复杂网络环境下的流量预测提供了新思路。 展开更多
关键词 软件定义网络 流量预测 鲸鱼算法 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于改进鱼鹰优化算法与VMD-LSTM的超短期风电功率预测 被引量:1
12
作者 罗潇远 刘杰 +3 位作者 杨斌 覃涛 陈昌盛 杨靖 《太阳能学报》 北大核心 2025年第3期652-660,共9页
为提升超短期风电功率的预测精度,提出一种加入融合柯西变异和反向学习策略的改进鱼鹰优化算法(IOOA),用于优化以长短期记忆网络(LSTM)和变模态分解(VMD)为基础的组合预测模型。首先,采用变模态分解收集的历史风电功率数据,将非线性较... 为提升超短期风电功率的预测精度,提出一种加入融合柯西变异和反向学习策略的改进鱼鹰优化算法(IOOA),用于优化以长短期记忆网络(LSTM)和变模态分解(VMD)为基础的组合预测模型。首先,采用变模态分解收集的历史风电功率数据,将非线性较强的原始功率数据分解为较为稳定的子序列。其次,使用改进鱼鹰优化算法对长短期记忆网络的隐藏单元数目、训练周期、初始学习率3个参数进行寻优。最后,使用长短期记忆网络对各子序列预测,将各子序列预测值叠加起来得到最终结果。通过风电场实测数据仿真分析,相比于普通长短期记忆网络模型的预测结果,所提模型的均方根误差下降了62.5%、平均绝对百分比误差和平均绝对误差分别下降了61.1%和55.9%,预测精度也高于其他4种组合预测模型,表明该模型成功提高了超短期风电功率的预测精度。 展开更多
关键词 长短期记忆网络 变模态分解 风力发电 改进鱼鹰优化算法 功率预测 优化算法
在线阅读 下载PDF
基于ABC-LSTM模型的锂离子电池剩余使用寿命预测 被引量:1
13
作者 刘勇 于怀汶 +3 位作者 刘大鹏 穆勇 王瀛洲 张秀宇 《储能科学与技术》 北大核心 2025年第1期331-345,共15页
为了保证储能系统的安全稳定运行,准确预测锂离子电池的剩余使用寿命(remaining useful life,RUL)至关重要。本工作提出了一种基于人工蜂群算法(artificial bee colony,ABC)和结合dropout技术的长短期记忆网络(long short-term memory,L... 为了保证储能系统的安全稳定运行,准确预测锂离子电池的剩余使用寿命(remaining useful life,RUL)至关重要。本工作提出了一种基于人工蜂群算法(artificial bee colony,ABC)和结合dropout技术的长短期记忆网络(long short-term memory,LSTM)相结合的综合预测模型,可有效提高锂离子电池RUL预测的准确性。首先,利用dropout正则化方法有效减轻过拟合现象的优势,提高预测模型的泛化能力。其次,引入针对容量回升及数据噪声问题的激活层网络结构,显著提升模型对复杂非线性数据的处理能力。然后,结合ABC算法优化LSTM综合预测模型的超参数,避免模型陷入局部最优解,提高RUL预测精度。最后,通过NASA研究中心及CALCE的公开数据集验证所提模型的预测准确性和鲁棒性。本工作对基于40%和60%训练数据的不同算法预测性能进行实验分析验证,并与麻雀优化算法、座头鲸优化算法等群体优化算法进行比较。实验结果表明,所提出的ABC-LSTM综合预测模型可以更加准确地捕获锂离子电池容量退化的全局趋势及局部特征,其中60%比例的RUL预测结果的均方根误差平均保持在1.02%以内,平均绝对误差平均保持在0.86%以内,拟合系数高达97%以上。 展开更多
关键词 锂离子电池 剩余使用寿命预测 长短期记忆网络 人工蜂群算法 dropout技术
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:1
14
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(GWO)算法 卷积神经网络(CNN) 双向长短期记忆(BiLSTM)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于ICEEMDAN-KPCA-ICPA-LSTM的光伏发电功率预测
15
作者 姚钦才 向文国 +2 位作者 陈时熠 曹敬 郑涛 《动力工程学报》 北大核心 2025年第3期374-382,共9页
光伏发电预测对于新型电力系统的平稳运行至关重要。针对光伏发电短期预测,提出了一种融合改进的完全自适应噪声集合经验模态分解(ICEEMDAN)、核主成分分析(KPCA)和改进的食肉植物算法(ICPA)与长短期记忆网络(LSTM)的光伏发电预测方法... 光伏发电预测对于新型电力系统的平稳运行至关重要。针对光伏发电短期预测,提出了一种融合改进的完全自适应噪声集合经验模态分解(ICEEMDAN)、核主成分分析(KPCA)和改进的食肉植物算法(ICPA)与长短期记忆网络(LSTM)的光伏发电预测方法。首先,该方法通过ICEEMDAN提取气象数据中非线性信号的隐含特征;其次,采用核主成分分析降低分解后产生的冗余信息,并根据主成分贡献率大小选取模型输入参数;最后,对食肉植物算法(CPA)进行改进,构建ICPA-LSTM模型,并开展了晴天、雨天、多云和多变天气4种典型天气类型下光伏发电功率预测校验。结果表明:在不同天气情况下,所提模型的决定系数R 2均大于99%,相较于对照模型具有更好的预测性能。 展开更多
关键词 光伏发电预测 ICEEMDAN 长短期记忆网络 食肉植物算法 核主成分分析
在线阅读 下载PDF
基于随机森林特征选择与POA-LSTM组合的参考作物腾发量预测方法
16
作者 李越 岳春芳 陈大春 《节水灌溉》 北大核心 2025年第1期120-128,共9页
为了更好地捕捉参考作物腾发量(ET_(0))数据的非线性特点及有效影响因素,实现对气象资料缺乏时的ET_(0)精准预测,基于融合建模思想提出了一种随机森林特征选择与鹈鹕优化算法(POA)优化长短期记忆神经网络(LSTM)组合的ET_(0)预测方法。首... 为了更好地捕捉参考作物腾发量(ET_(0))数据的非线性特点及有效影响因素,实现对气象资料缺乏时的ET_(0)精准预测,基于融合建模思想提出了一种随机森林特征选择与鹈鹕优化算法(POA)优化长短期记忆神经网络(LSTM)组合的ET_(0)预测方法。首先,采用随机森林特征选择方法筛选出有效气象因子作为模型输入;随后,通过POA搜索最优超参数组合用于优化LSTM模型;最后,基于最优超参数下的LSTM模型进行ET_(0)预测。结果表明,POA-LSTM模型整体优于其余模型,其中POA-LSTM1(u_(2)、N、R_(H)、T_(mean))预测精度最高,测试集R^(2)、RMSE和MAE分别为0.927、0.778和0.400 mm/d;POA-LSTM4(u_(2)、N)也能较好地适应少量气象参数估算ET_(0),测试集R^(2)、RMSE和MAE分别为0.881、0.995和0.510 mm/d,相较于其他方法,具有更高的预测精度和稳定性。 展开更多
关键词 参考作物腾发量 长短期记忆神经网络 随机森林 特征选择 鹈鹕优化算法
在线阅读 下载PDF
基于VMD-IDBO-LSTM的光伏功率预测模型
17
作者 乔雅宁 贾宇琛 +1 位作者 高立艾 温鹏 《现代电子技术》 北大核心 2025年第6期168-174,共7页
针对光伏发电功率波动性强和预测准确度低的问题,提出一种基于变分模态分解(VMD)、改进蜣螂算法(IDBO)优化长短期记忆(LSTM)网络的光伏功率预测模型。利用VMD对光伏功率时序数据进行分解,得到不同频率但具有一定规律的子序列,从而达到... 针对光伏发电功率波动性强和预测准确度低的问题,提出一种基于变分模态分解(VMD)、改进蜣螂算法(IDBO)优化长短期记忆(LSTM)网络的光伏功率预测模型。利用VMD对光伏功率时序数据进行分解,得到不同频率但具有一定规律的子序列,从而达到减少光伏功率波动性的目的。利用可变螺旋搜索策略、Lévy飞行策略和自适应t分布变异策略来改进蜣螂算法,对改进后的蜣螂算法与其他优化算法进行性能测试对比,经过改进的蜣螂算法来优化LSTM中的网络隐含层个数和初始学习速率并建立预测模型,将各个子序列的预测值相加,从而得出最后的预测功率结果。通过实际算例表明,与LSTM预测模型、DBO-LSTM预测模型、VMD-DBO-LSTM预测模型相比,VMD-IDBO-LSTM模型预测精度较高,更具有准确性。 展开更多
关键词 光伏发电 功率预测 变分模态分解 改进蜣螂算法 长短期记忆网络 优化算法
在线阅读 下载PDF
基于多策略改进灰狼优化算法优化CNN-LSTM的IGBT寿命预测
18
作者 付聪 吴松荣 +2 位作者 柳博 张驰 王少惟 《半导体技术》 北大核心 2025年第2期161-169,共9页
针对绝缘栅双极型晶体管(IGBT)长期工作出现的老化失效问题,提出一种多策略改进灰狼优化算法优化卷积神经网络(CNN)和长短期记忆(LSTM)网络组合模型的IGBT寿命预测方法。分析IGBT的失效机理并建立CNN-LSTM组合预测模型。利用灰狼优化算... 针对绝缘栅双极型晶体管(IGBT)长期工作出现的老化失效问题,提出一种多策略改进灰狼优化算法优化卷积神经网络(CNN)和长短期记忆(LSTM)网络组合模型的IGBT寿命预测方法。分析IGBT的失效机理并建立CNN-LSTM组合预测模型。利用灰狼优化算法优化CNN-LSTM模型中的初始学习率等参数,为解决传统灰狼优化算法容易陷入局部最优解的问题,从最优解扰动、参数调整和搜索机制方面引入三种策略进行改进。最后,基于NASA研究中心提供的IGBT老化数据集对改进模型进行性能验证。仿真结果表明:对比LSTM、CNN-LSTM等模型,多策略改进灰狼优化算法优化的CNN-LSTM模型的均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)三个评价指标均为最优,可以有效应用于IGBT寿命预测。 展开更多
关键词 IGBT 长短期记忆网络 改进灰狼优化算法 莱维飞行策略 寿命预测
在线阅读 下载PDF
基于多头LSTM模型的南疆枣树土壤墒情预测
19
作者 杨轶航 吕德生 +4 位作者 刘宁宁 王振华 李淼 张金珠 王东旺 《水资源与水工程学报》 北大核心 2025年第2期207-217,共11页
在南疆枣业生产中,准确预测土壤墒情对于优化作物种植质量和制定灌溉计划至关重要。通过建立高精度的土壤墒情预测模型,为南疆枣树的灌溉管理提供了科学依据。基于2021和2022年的全生育期枣树在20、40、60、80 cm土层的土壤墒情数据、... 在南疆枣业生产中,准确预测土壤墒情对于优化作物种植质量和制定灌溉计划至关重要。通过建立高精度的土壤墒情预测模型,为南疆枣树的灌溉管理提供了科学依据。基于2021和2022年的全生育期枣树在20、40、60、80 cm土层的土壤墒情数据、气象数据以及灌溉水量等小时级数据集,采用长短期记忆神经网络(LSTM)模型对各土层土壤墒情进行多步预测。引入了由4个单一LSTM模型组成的多头LSTM模型,旨在扩大预测范围并提高预测精度,并采用k折交叉验证结合麻雀搜索算法(SSA)对每个单一LSTM模型进行超参数调优,以提升模型的泛化能力和准确性。对各单一模型的输出进行加权平均,获得最终的预测结果。结果表明:在4个土层墒情均值数据集上,多头LSTM模型对未来1、12、24、48 h的土壤墒情预测的决定系数(R^(2))分别提升至0.951、0.932、0.870、0.815;多头LSTM模型可有效提升枣树土壤墒情的中长期预测精度,特别是在24和48 h的预测中,改进效果尤为明显,这为枣树的精细化灌溉管理提供了有力支持,可帮助农民更有效地利用水资源,减少浪费。 展开更多
关键词 土壤墒情预测 多头LSTM 麻雀搜索算法 k折交叉验证 南疆滴灌骏枣
在线阅读 下载PDF
采用长短期记忆神经网络的压电式六维力/力矩传感器解耦算法
20
作者 亓振广 王桂从 +2 位作者 褚宏博 张帅 李映君 《西安交通大学学报》 北大核心 2025年第4期158-170,共13页
针对压电式六维力/力矩传感器存在的维间耦合导致传感器测力性能下降问题,提出了一种基于长短期记忆神经网络(LSTM)的压电式六维力/力矩传感器解耦算法。首先,通过六维力传感器静态标定实验,获取解耦算法所需的实验数据,并对其进行处理... 针对压电式六维力/力矩传感器存在的维间耦合导致传感器测力性能下降问题,提出了一种基于长短期记忆神经网络(LSTM)的压电式六维力/力矩传感器解耦算法。首先,通过六维力传感器静态标定实验,获取解耦算法所需的实验数据,并对其进行处理;然后,通过分析传感器维间耦合产生的原因及LSTM神经网络解耦原理,构建LSTM神经网络解耦模型;最后,采用基于LSTM神经网络的解耦算法,对传感器输出的多维非线性特性开展优化,解耦后得到传感器输入、输出之间的映射关系和对应的输出数据,并与径向基函数(RBF)及最小二乘(LS)解耦算法进行对比分析。研究结果表明:所使用四点支撑式压电六维力传感器的最大重复性误差为1.55%;采用基于LSTM的神经网络算法解耦后,传感器输出结果的最大非线性误差、交叉耦合误差分别为0.55%和0.28%,均小于RBF和LS算法。LSTM神经网络解耦算法能有效减少六维力/力矩传感器的维间耦合,提高传感器的测量精度,对航空航天领域的发展具有参考意义。 展开更多
关键词 六维力/力矩传感器 压电式 解耦算法 长短期记忆神经网络 维间耦合
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部