期刊文献+
共找到161篇文章
< 1 2 9 >
每页显示 20 50 100
Navigation jamming signal recognition based on long short-term memory neural networks 被引量:3
1
作者 FU Dong LI Xiangjun +2 位作者 MOU Weihua MA Ming OU Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期835-844,共10页
This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces ... This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces the long shortterm memory(LSTM) neural network into the recognition algorithm and combines the time-frequency(TF) analysis for signal preprocessing. Five kinds of navigation jamming signals including white Gaussian noise(WGN), pulse jamming, sweep jamming, audio jamming, and spread spectrum jamming are used as input for training and recognition. Since the signal parameters and quantity are unknown in the actual scenario, this work builds a data set containing multiple kinds and parameters jamming to train the TF-LSTM. The performance of this method is evaluated by simulations and experiments. The method has higher recognition accuracy and better robustness than the existing methods, such as LSTM and the convolutional neural network(CNN). 展开更多
关键词 satellite navigation jamming recognition time-frequency(TF)analysis long short-term memory(lstm)
在线阅读 下载PDF
基于优化的EMD-LSTM的土石坝沉降预测模型研究
2
作者 李宗淇 姚成林 赵文波 《水利水电技术(中英文)》 北大核心 2025年第S1期272-281,共10页
针对土石坝沉降预测模型中回归模型易受多重共线性影响,神经网络模型存在过拟合、局部极值陷阱以及超参数难以确定等问题,提出了一种基于经验模态分解(EMD)和长短期记忆神经网络(LSTM)的优化模型。首先,通过EMD对全球导航卫星系统(GNSS... 针对土石坝沉降预测模型中回归模型易受多重共线性影响,神经网络模型存在过拟合、局部极值陷阱以及超参数难以确定等问题,提出了一种基于经验模态分解(EMD)和长短期记忆神经网络(LSTM)的优化模型。首先,通过EMD对全球导航卫星系统(GNSS)测点的时间序列数据进行多尺度分解,提取趋势和周期成分。然后,利用主成分分析(PCA)筛选关键影响因子,减少数据维度,提高模型的泛化能力。最后,采用LSTM构建时间序列模型,并通过鲸鱼优化算法(WOA)优化LSTM的超参数,以提升模型的预测精度和收敛速度。实验结果表明,该模型在土石坝沉降预测中具有显著的优势,均方误差(MSE)为7.070 1,平均绝对误差(MAE)为1.885 9,拟合优度(R2)为99.83%。与传统方法相比,该模型在降噪、特征捕捉和超参数优化等方面均有明显提升,可为土石坝沉降提供可靠的预测方案。 展开更多
关键词 土石坝 沉降预测 模型 经验模态分解(EMD) 长短期记忆神经网络(lstm)
在线阅读 下载PDF
基于BO-LSTM的排露沟流域气象水文演变分析及径流预测模型建立 被引量:1
3
作者 康永德 陈佩 +3 位作者 许尔文 任小凤 敬文茂 张娟 《水利水电技术(中英文)》 北大核心 2025年第4期1-11,共11页
【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温... 【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温对径流量变化的影响,并建立了BO-LSTM排露沟流域径流预测模型。【结果】结果显示:(1)2000—2019年排露沟流域降水、气温和径流呈现两段式的上升趋势,分界点在2010年,降水和径流,第一阶段上升趋势均高于第二阶段,斜率依次为10.74、3.16;气温则相反,第二阶段高于第一阶段,斜率为0.11。并且降水、气温和径流的MK突变检验z值均大于0。(2)降水量在5—10月对径流量变化的贡献率较大;而气温在12月—次年4月对径流变化的贡献率大。(3)排露沟流域气温主要有3 a、14 a两个主周期,其中第一主周期为14 a;径流存在19 a、9 a和3 a三个主周期,其中第一主周期为19 a;降水主要存在4 a、11 a两个主周期,第一主周期为11 a。(4)BO-LSTM排露沟径流预测模型,精度R 2为0.63,均方根误差为14047 m 3,模型在径流量较小月份的预测精度大于径流量较大的月份。【结论】近20年来排露沟流域的降水、气温及径流均呈上升趋势;排露沟流域径流、降水及气温均存在明显的周期性;气温和降水是影响排露沟流域径流的重要因素;径流预测模型可以适用于排露沟流域。上述研究结果为祁连山水资源效应研究和内陆河流域水资源预测提供科学支撑。 展开更多
关键词 水文 水资源 径流演变 排露沟流域 径流预测 神经网络 lstm(long short-term memory)模型 贝叶斯优化算法
在线阅读 下载PDF
基于LSTM-GRU-Attention模型的管道直饮水月供水量预测
4
作者 刘颖 刘治学 +5 位作者 郭广丰 刘保卫 杜帅帅 王鹏渊 张新田 赵继然 《水资源与水工程学报》 北大核心 2025年第3期116-124,共9页
管道直饮水月供水量的预测受到多种因素的影响,如气温变化、节假日效应以及用户数量变动等,这些因素共同作用导致供水量序列呈现出复杂性、非线性和非平稳性的特点。为了提高预测模型的准确度并优化其网络结构,提出了一种结合长短期记忆... 管道直饮水月供水量的预测受到多种因素的影响,如气温变化、节假日效应以及用户数量变动等,这些因素共同作用导致供水量序列呈现出复杂性、非线性和非平稳性的特点。为了提高预测模型的准确度并优化其网络结构,提出了一种结合长短期记忆(LSTM)、门控循环单元(GRU)与注意力机制(Attention)的LSTM-GRU-Attention预测模型。该模型通过贝叶斯优化算法确定最优超参数,并将外部因素如气温等与历史月供水量数据一起作为输入时间序列,借助Attention机制,模型能够对输入序列中的不同时间步进行加权处理,从而更准确地捕捉供水量的波峰和波谷值。结果表明:与单独使用LSTM、GRU及LSTM-GRU模型相比,LSTM-GRU-Attention模型在预测精度上有显著提升,平均绝对百分比误差(MAPE)达到了6.89%,较其他3种模型分别降低了7.74%、6.29%和5.23%,同时收敛速度更快。LSTM-GRU-Attention模型在高效预测管道直饮水月供水量方面展现了显著的效果,有助于直饮水企业合理安排生产计划、降低运营成本及提升管理水平,显示出较高的应用价值。 展开更多
关键词 管道直饮水 月供水量预测 长短期记忆网络 门控循环单元 lstm-GRU-Attention模型
在线阅读 下载PDF
基于差分处理的EMD-LSTM短时空中交通流量预测
5
作者 周睿 邱爽 +2 位作者 孟双杰 李明 张强 《科学技术与工程》 北大核心 2025年第2期842-849,共8页
随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(emp... 随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(empirical mode decomposition,EMD)和长短期记忆(long short-term memory,LSTM)相结合的短时空中交通流量预测模型。首先,该模型对短时空中交通流量序列进行经验模态分解;其次,为了提高预测精度,运用数据差分对时间序列进行平稳化处理;最后,将平稳处理后的序列分别输入LSTM网络模型进行预测,经过数据重构,得到最终的短时流量预测值。利用郑州新郑国际机场数据进行了实验验证,结果表明,该模型预测精度和拟合程度的典型指标RSME、MAE、R^(2)分别为0.29%,0.08%、96.40%,相较于其他方法,预测精度大幅度提高,可以为短时空中交通流量预测提供有益参考。 展开更多
关键词 空中交通流量管理 短时空中交通流量预测 经验模态分解(empirical mode decomposition EMD) 数据差分处理(data differential processing) 长短期记忆(long short-term memory lstm)
在线阅读 下载PDF
基于SVM-SARIMA-LSTM模型的城市用水量实时预测
6
作者 李轩 吴永强 +2 位作者 王佳伟 杨伟超 张天洋 《水电能源科学》 北大核心 2025年第3期36-39,6,共5页
为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋... 为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋势部分与气温、降水、风速、气压和相对湿度5个气象因素之间的关系,利用长短时记忆网络(LSTM)对波动性明显的残差部分进行关系捕捉,构建了SVM-SARIMA-LSTM用水量实时预测模型,并利用衡水市3个月时用水量数据和气象数据训练SVM-SARIMA-LSTM模型,以随后1周的实测数据作为验证集对模型预测性能进行评估。结果表明,SVM-SARIMA-LSTM模型的平均绝对百分比误差(E_(MAP))比SARIMA模型低4.502%,均方根误差(E_(RMSE))降低了39.084%,确定系数R^(2)提高了9.965%,最大绝对误差(E_(maxA))减小了55.946%,具有较好的应用价值。所建模型通过整合关键气象因素,准确地捕捉到城市用水量的季节性趋势及非季节性波动,展现了优良的泛化性。 展开更多
关键词 SARIMA模型 支持向量机 长短时记忆神经网络 SVM-SARIMA-lstm模型 STL分解程序 气象因素 用水量预测
在线阅读 下载PDF
基于SBAS-InSAR与LSTM技术的高寒矿区排土场边坡形变监测研究
7
作者 吴志杰 刘昌义 +5 位作者 胡夏嵩 唐彬元 李帅飞 邓太国 梁晓娜 雷浩川 《工程地质学报》 北大核心 2025年第3期1083-1098,共16页
针对传统监测技术难以对高寒冻融环境条件下矿区排土场边坡开展连续性、整体性形变监测,以及难以实现精准预测排土场变形趋势,本文以青海木里煤田江仓矿区2号井为研究区,基于Sentinel-1 A影像数据,联合SBAS-InSAR与长短期记忆神经网络(L... 针对传统监测技术难以对高寒冻融环境条件下矿区排土场边坡开展连续性、整体性形变监测,以及难以实现精准预测排土场变形趋势,本文以青海木里煤田江仓矿区2号井为研究区,基于Sentinel-1 A影像数据,联合SBAS-InSAR与长短期记忆神经网络(LSTM)的方法,获取青海木里煤田江仓矿区2号井2019~2022年间2处排土场边坡形变结果,开展排土场边坡形变特征和降雨因素对边坡形变趋势的影响研究,并利用排土场边坡时序形变结果进行LSTM预测模型的构建。研究结果表明,青海木里煤田江仓矿区2号井南、北2处排土场边坡年平均形变速率为-62~21 mm·a^(-1),最大累积沉降量分别为255 mm、214.5 mm;对比日降雨量值表明,降雨后排土场边坡形变表现出呈相对加速沉降的变化趋势;在LSTM模型的预测样本中最大误差为2.42 mm,决定系数(R^(2))均大于0.9,最大均方根误差(RMSE)、均方误差(MAE)分别为1.14 mm、0.97 mm,表明使用SBAS-InSAR技术与构建LSTM模型在高寒矿区排土场边坡形变监测及预测方面具有可靠性和可行性,可为高寒矿区排土场边坡及类似工程边坡稳定性评价及病害防治提供科学指导。 展开更多
关键词 高寒矿区 SBAS-InSAR 长短期记忆(lstm)神经网络模型 变形监测
在线阅读 下载PDF
CEEMDAN改进的CNN-LSTM短期电离层TEC预测模型
8
作者 焦迎香 李克昭 岳哲 《导航定位学报》 北大核心 2025年第3期107-115,共9页
针对电离层总电子含量(TEC)值的时序变化通常呈现非线性和随机性的问题,提出一种结合完全集合经验模态分解(CEEMDAN)和基于卷积神经网络和长短时记忆网络的时空网络(CNN-LSTM)神经网络的TEC预测模型:采用分解、预测和重构的方法,结合CEE... 针对电离层总电子含量(TEC)值的时序变化通常呈现非线性和随机性的问题,提出一种结合完全集合经验模态分解(CEEMDAN)和基于卷积神经网络和长短时记忆网络的时空网络(CNN-LSTM)神经网络的TEC预测模型:采用分解、预测和重构的方法,结合CEEMDAN在时间序列分解上和CNN-LSTM在预测精度上的优势,对电离层TEC值进行短期预测;然后利用国际全球卫星导航系统服务组织(IGS)中心发布的2019和2023年4个季节,以及分布在中高低纬度的6个格网点的TEC格网数据进行实验分析。实验结果表明,CEEMDAN-CNN-LSTM组合模型的预测结果能很好地反映电离层TEC的时间变化特性,在2019年太阳活动低年和2023年太阳活动高年的预测精度均方根误差(RMSE)相较于长短时记忆(LSTM)网络模型可分别平均提升2.62总电子含量单位(TECU)和10.44TECU,相较于CNN-LSTM模型可提升1.85TECU和7.23TECU。 展开更多
关键词 电离层总电子含量(TEC) 长短期记忆(lstm)神经网络 卷积神经网络(CNN) 完全集合经验模态分解(CEEMDAN) 预测模型
在线阅读 下载PDF
Intelligent modeling method for OV models in DoDAF2.0 based on knowledge graph
9
作者 ZHANG Yue JIANG Jiang +3 位作者 YANG Kewei WANG Xingliang XU Chi LI Minghao 《Journal of Systems Engineering and Electronics》 2025年第1期139-154,共16页
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi... Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method. 展开更多
关键词 system of systems(SoS)architecture operational viewpoint(OV)model meta model bidirectional long short-term memory and conditional random field(Bilstm-CRF) model generation systems modeling language
在线阅读 下载PDF
基于增强Bi-LSTM的船舶运动模型辨识
10
作者 张浩晢 杨智博 +2 位作者 焦绪国 吕成兴 雷鹏 《中国舰船研究》 北大核心 2025年第1期76-84,共9页
[目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提... [目的]针对基于数据驱动的船舶建模策略获得的模型预测精度低、适应性差等特点,提出一种增强的双向长短期记忆(Bi-LSTM)神经网络用于船舶的高精度非参数化建模。[方法]首先,利用Bi-LSTM神经网络的特点,实现对序列双向时间维度的特征提取。基于此,设计一维卷积神经网络(1D-CNN)提取序列的空间维度特征。然后,采用多头自注意力机制(MHSA)多角度对序列进行自适应加权处理。利用KVLCC2船舶航行数据,将所提增强Bi-LSTM模型与支持向量机(SVM)、门控循环单元(GRU)、长短期记忆神经网络(LSTM)模型的预测效果进行对比。[结果]所提增强Bi-LSTM模型在测试集中均方根误差(RMSE)、平均绝对误差(MAE)性能指标分别低于0.015和0.011,决定系数(R2)高于0.99913,预测精度显著高于SVM,GRU,LSTM模型。[结论]增强Bi-LSTM模型泛化性能优异,预测稳定性及预测精度高,有效实现了船舶的运动模型辨识。 展开更多
关键词 系统辨识 非参数化建模 一维卷积神经网络 双向长短期记忆神经网络 多头自注意力机制
在线阅读 下载PDF
Prophet-LSTM组合模型在运输航空征候预测中的应用 被引量:3
11
作者 杜红兵 邢梦柯 赵德超 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1878-1885,共8页
为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分... 为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分;其次,利用长短期记忆网络(Long Short-Term Memory,LSTM)建模,获取运输航空征候万时率的非线性部分;最后,利用方差倒数法建立Prophet-LSTM组合模型,使用建立的组合模型对2021年1—12月运输航空征候万时率进行预测,将预测结果与实际值进行对比验证。结果表明,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别为0.0973、16.1285%、0.1287。相较于已有的自回归移动平均(Auto Regression Integrated Moving Average,ARIMA)+反向传播神经网络(Back Propagation Neural Network,BPNN)组合模型和GM(1,1)+ARIMA+LSTM组合模型,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别减小了0.0259、10.4874百分点、0.0143和0.0128、2.0599百分点、0.0086,验证了Prophet-LSTM组合模型的预测精度更高,性能更优良。 展开更多
关键词 安全社会工程 运输航空征候 Prophet模型 长短期记忆网络(lstm)模型 组合预测模型
在线阅读 下载PDF
利用长短期记忆网络LSTM对赤道太平洋海表面温度短期预报 被引量:2
12
作者 张桃 林鹏飞 +6 位作者 刘海龙 郑伟鹏 王鹏飞 徐天亮 李逸文 刘娟 陈铖 《大气科学》 CSCD 北大核心 2024年第2期745-754,共10页
海表面温度作为海洋中一个最重要的变量,对全球气候、海洋生态等有很大的影响,因此十分有必要对海表面温度(SST)进行预报。深度学习具备高效的数据处理能力,但目前利用深度学习对整个赤道太平洋的SST短期预报及预报技巧的研究仍较少。... 海表面温度作为海洋中一个最重要的变量,对全球气候、海洋生态等有很大的影响,因此十分有必要对海表面温度(SST)进行预报。深度学习具备高效的数据处理能力,但目前利用深度学习对整个赤道太平洋的SST短期预报及预报技巧的研究仍较少。本文基于最优插值海表面温度(OISST)的日平均SST数据,利用长短期记忆(LSTM)网络构建了未来10天赤道太平洋(10°S~10°N,120°E~80°W)SST的逐日预报模型。LSTM预报模型利用1982~2010年的观测数据进行训练,2011~2020年的观测数据作为初值进行预报和检验评估。结果表明:赤道太平洋东部地区预报均方根误差(RMSE)大于中、西部,东部预报第1天RMSE为0.6℃左右,而中、西部均小于0.3℃。在不同的年际变化位相,预报RMSE在拉尼娜出现时期最大,正常年份次之,厄尔尼诺时期最小,RMSE在拉尼娜时期比在厄尔尼诺时期可达20%。预报偏差整体表现为东正、西负。相关预报技巧上,中部最好,可预报天数基本为10天以上,赤道冷舌附近可预报天数为4~7天,赤道西边部分地区可预报天数为3天。预报模型在赤道太平洋东部地区各月份预报技巧普遍低于西部地区,相比较而言各区域10、11月份预报技巧最低。总的来说,基于LSTM构建的SST预报模型能很好地捕捉到SST在时序上的演变特征,在不同案例中预报表现良好。同时该预报模型依靠数据驱动,能迅速且较好地预报未来10天以内的日平均SST的短期变化。 展开更多
关键词 海表面温度 lstm (long short-term memory) 短期预报 赤道太平洋
在线阅读 下载PDF
基于深度AttLSTM网络的脱硫过程建模 被引量:2
13
作者 刘泉伯 李晓理 王康 《北京工业大学学报》 CAS CSCD 北大核心 2024年第2期140-151,共12页
脱硫过程是具有高度动态非线性和较大延迟时间的复杂工业过程,为了解决烟气脱硫过程的建模问题,设计了注意力机制下的深度长短期记忆(attention mechanism-based long short-term memory,AttLSTM)网络,并基于该网络设计自动编码器,完成... 脱硫过程是具有高度动态非线性和较大延迟时间的复杂工业过程,为了解决烟气脱硫过程的建模问题,设计了注意力机制下的深度长短期记忆(attention mechanism-based long short-term memory,AttLSTM)网络,并基于该网络设计自动编码器,完成脱硫过程异常点的检测。该文首次提出使用AttLSTM网络自编码器对脱硫过程进行离群点检测,并且该网络模型同样首次应用于脱硫过程的辨识任务中。从更深的意义上讲,该文尝试使用深度学习模型对复杂系统进行辨识,所建立的AttLSTM网络之前未出现在系统辨识领域,该网络的出现可以丰富辨识模型的选择,同时为人工智能技术在系统辨识领域和控制领域的应用与推广提供参考。实验结果表明,相比于之前文献出现的脱硫过程建模方法,所提方法在不同性能指标上均具有更好的表现,由此可以证明深度AttLSTM网络在脱硫场景下的有效性。 展开更多
关键词 湿法烟气脱硫 过程建模 长短期记忆网络 注意力机制 自动编码器 大气污染
在线阅读 下载PDF
Real-time UAV path planning based on LSTM network 被引量:2
14
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(lstm)
在线阅读 下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM 被引量:1
15
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) long short-term memory(lstm) Layer counting Multi-source fusion
在线阅读 下载PDF
基于CNN和BiLSTM神经网络模型的太阳能供暖负荷预测研究 被引量:2
16
作者 周泽楷 侯宏娟 +1 位作者 孙莉 靳涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期415-422,共8页
针对太阳能供暖系统中因热量供需不匹配而引起的能源浪费现象,提出一种基于卷积神经网络-双向长短期记忆神经网络的短期热负荷预测模型。首先对数据进行清洗,使数据准确完整;其次依据皮尔逊相关系数对输入特征进行筛选;最后依据其空间-... 针对太阳能供暖系统中因热量供需不匹配而引起的能源浪费现象,提出一种基于卷积神经网络-双向长短期记忆神经网络的短期热负荷预测模型。首先对数据进行清洗,使数据准确完整;其次依据皮尔逊相关系数对输入特征进行筛选;最后依据其空间-时间特征建立卷积神经网络-双向长短期记忆神经网络模型。在与单一神经网络模型长短期记忆神经网络及双向长短期记忆神经网络进行详细比较和分析后,结果表明,该模型相较于传统神经网络模型在精确度上存在明显提升,验证了本模型在太阳能供暖负荷预测中的有效性。 展开更多
关键词 太阳能供暖 卷积神经网络 长短期记忆网络 热负荷 神经网络模型
在线阅读 下载PDF
基于GMM-KNN-LSTM的烧结矿化学指标预测 被引量:1
17
作者 閤光磊 吴朝霞 +1 位作者 刘梦园 姜玉山 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期314-322,共9页
针对烧结矿化学指标检测频率低导致无标签样本无法被机器学习利用的问题,提出了一种充分利用样本中有用信息的烧结矿化学指标预测模型.首先,结合高斯混合模型(GMM)和K-近邻(KNN)算法,将无标签样本转化为有标签样本,然后与长短期记忆(LS... 针对烧结矿化学指标检测频率低导致无标签样本无法被机器学习利用的问题,提出了一种充分利用样本中有用信息的烧结矿化学指标预测模型.首先,结合高斯混合模型(GMM)和K-近邻(KNN)算法,将无标签样本转化为有标签样本,然后与长短期记忆(LSTM)单元相结合,用于预测烧结矿的总铁质量分数、FeO质量分数和碱度3个化学指标.通过与反向传播神经网络(BPNN)、循环神经网络(RNN)和LSTM三种模型对比,结果表明所建模型具有较低的预测误差.总铁质量分数和FeO质量分数的预测命中率在允许误差±0.5%内时分别达到98.73%和95.33%,碱度的预测命中率在允许误差±0.05内为98.13%,展现了较高的预测精度. 展开更多
关键词 烧结矿化学指标 预测模型 无标签样本处理算法 lstm 数据预处理
在线阅读 下载PDF
基于GMM和GA-LSTM的稀土熔盐电解过程原料含量状态识别模型 被引量:1
18
作者 张震 朱尚琳 +3 位作者 伍昕宇 刘飞飞 何鑫凤 王家超 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第5期1727-1742,共16页
在高温高风险的稀土熔盐电解工艺中,为了实现稀土熔盐电解过程原料含量状态的智能识别,提出了一种基于混合高斯背景建模(GMM)和遗传算法优化的长短期记忆神经网络(GA-LSTM)的分类模型。模型通过GMM算法、R通道自适应滤波和中值滤波准确... 在高温高风险的稀土熔盐电解工艺中,为了实现稀土熔盐电解过程原料含量状态的智能识别,提出了一种基于混合高斯背景建模(GMM)和遗传算法优化的长短期记忆神经网络(GA-LSTM)的分类模型。模型通过GMM算法、R通道自适应滤波和中值滤波准确提取图像的火焰前景和特征,以量化熔盐电解反应的剧烈程度,进而判断稀土熔盐电解处于原料含量过多或含量正常状态;然后利用GA-LSTM神经网络建立熔盐表面火焰特征和稀土熔盐电解过程原料含量状态的非线性映射关系。结果表明:模型的识别精度高达99.79%,具有较好的泛化性,为实现稀土熔盐电解工艺自动化提供了一定的参考价值。 展开更多
关键词 稀土熔盐 火焰 特征 混合高斯模型 长短期记忆神经网络 遗传算法
在线阅读 下载PDF
Track correlation algorithm based on CNN-LSTM for swarm targets
19
作者 CHEN Jinyang WANG Xuhua CHEN Xian 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期417-429,共13页
The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms... The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets. 展开更多
关键词 track correlation correlation accuracy rate swarm target convolutional neural network(CNN) long short-term memory(lstm)neural network
在线阅读 下载PDF
基于LSTM的航线飞行员操纵平稳性预测模型
20
作者 王文超 何健 +1 位作者 宋佰胜 汪磊 《中国安全科学学报》 CSCD 北大核心 2024年第12期48-55,共8页
为实时预测飞行员不安全事件,使用长短期记忆神经网络(LSTM)评价飞行员操纵平稳性,并通过优化指标改进飞行员的操纵品质。首先,通过筛选飞行员在执飞中的平稳性操纵快速存取记录仪(QAR)数据,建立描述飞行员操纵行为特征的人机操纵因素集... 为实时预测飞行员不安全事件,使用长短期记忆神经网络(LSTM)评价飞行员操纵平稳性,并通过优化指标改进飞行员的操纵品质。首先,通过筛选飞行员在执飞中的平稳性操纵快速存取记录仪(QAR)数据,建立描述飞行员操纵行为特征的人机操纵因素集;其次,靶向分析影响飞机平稳操纵的因子,采用灰色关联度分析方法,从与飞机平稳性紧密相关的37个监测参数中定位关联风险的15个特征度量参数;然后,利用LSTM建立模型训练和测试所得数据预测飞行员的操纵平稳性,并制定指标评判标准评价安全平稳性品质;最后,通过机器学习(ML)对相关的影响因子进行重要度排序以改进模型效度。研究结果表明:时间序列模型可以有效剔除原始参数中与预测结果相关性小以及无相关的参数干扰;通过平稳性模型预测风险的精度较高,可为飞行员提供3~4 s的时间裕度采取预控措施,减少飞行过程中的不安全事件发生。 展开更多
关键词 长短期记忆(lstm) 飞行员 操纵平稳性 预测模型 快速存取记录仪(QAR) 机器学习(ML)
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部