期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
1
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus long short-term memory recurrentneural network
在线阅读 下载PDF
采用门控循环单元与深度进化策略的股票指数量化模型
2
作者 任晓萍 陈志平 《西安交通大学学报》 北大核心 2025年第2期146-155,共10页
为了提高股票价指数预测的准确性、增强统计建模性能优化与股票指数特征相依的交易策略效果,提出一种将指数预测与量化交易策略有效结合的门控循环单元深度进化量化模型(GRU-DES)。首先,建立循环神经网络(RNN)、长短时记忆神经网络(LSTM... 为了提高股票价指数预测的准确性、增强统计建模性能优化与股票指数特征相依的交易策略效果,提出一种将指数预测与量化交易策略有效结合的门控循环单元深度进化量化模型(GRU-DES)。首先,建立循环神经网络(RNN)、长短时记忆神经网络(LSTM)和门控循环单元网络(GRU)预测模型,分别对上海证券交易所(上证)超大盘股票指数、上证中盘股票指数和上证小盘股票指数进行预测;接着采用所提出的深度进化量化模型(DES)对三大股票指数的预测值与真实值进行回测研究,通过比较预测结果与真实结果在同一策略下的各项回测指标和交易细节等特性确定最优网络结构和策略参数,进而优化深度进化策略;最后根据优化后的策略提出了GRU-DES模型,并再次对三大股票指数进行样本外数据回测来验证模型有效性。实证回测结果表明:所提出的GRU-DES模型在各量化回测指标上较LSTM-DES模型与RNN-DES模型的预测精度均高出14%以上,有效解决了统计预测指标的随机性和过拟合的问题;根据2016年至2024年7年间数据回测,所提出的GRU-DES模型比强化学习模型在各回测指标中均展现了稳定性和有效性。 展开更多
关键词 股票指数 量化模型 长短时记忆神经网络 门控循环单元 收益率
在线阅读 下载PDF
基于MLP和注意力机制BiLSTM的水电机组劣化趋势预测
3
作者 何一纯 李超顺 杨云鹏 《水电能源科学》 北大核心 2025年第3期177-181,100,共6页
水电站因工作时间长、内部结构复杂及运行环境等因素导致水电机组部件逐步老化受损,使电站运行存在重大安全隐患。水电机组劣化趋势预测能反映机组的运行安全,为此提出一种基于多层感知机(MLP)和注意力机制的双向长短时记忆(Attention-B... 水电站因工作时间长、内部结构复杂及运行环境等因素导致水电机组部件逐步老化受损,使电站运行存在重大安全隐患。水电机组劣化趋势预测能反映机组的运行安全,为此提出一种基于多层感知机(MLP)和注意力机制的双向长短时记忆(Attention-BiLSTM)相结合的劣化趋势预测模型(MLP-BiLSTM-Attention),首先将机组各工况数据与各个振摆数据进行相关性分析,获取关键部分之间的高度相关性;然后提取较高相关度特征值并输入改进后的MLP模型构建健康模型,利用实际机组运行数据与健康模型数据构建机组劣化度,劣化度信息输入Attention-BiLSTM预测网络实现劣化度预测;最后通过多种模型对比验证了所提模型的可行性和有效性。 展开更多
关键词 水轮机组 劣化预测 健康模型 多层感知机 双向长短时记忆网络
在线阅读 下载PDF
基于自注意力层的神经网络弹道落点预测方法
4
作者 马月红 曹彦敏 +5 位作者 李超旺 赵辰 周辉 赵慧亮 王晓成 李乾 《弹箭与制导学报》 北大核心 2025年第1期53-61,共9页
针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序... 针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序列时动态关注不同时刻信息的能力,缓解网络中的梯度爆炸问题。采用多维时间序列数据的输入表示方法,结合历史弹道轨迹数据和目标特征等信息,减小弹道落点预测误差。仿真结果表明,基于自注意力层的CNN-BiLSTM-BiGRU网络模型的预测效果优于其他模型,射程预测的最大误差占真实值的0.156%,横偏预测的最大误差占真实值的5.904%。文中研究为弹道落点预测领域提供了重要的参考依据。 展开更多
关键词 弹道落点预测 深度学习 弹道模型 自注意力层 卷积神经网络 长短期记忆网络 门控循环神经网络
在线阅读 下载PDF
基于LSTM-Attention和CNN-BiGRU误差修正的光伏功率预测
5
作者 吐松江·卡日 雷柯松 +2 位作者 马小晶 吴现 余凯峰 《太阳能学报》 CSCD 北大核心 2024年第12期85-93,共9页
为有效分析与利用光伏功率预测模型中以特定规律分布的预测误差,提出基于LSTM-Attention和CNN-BiGRU误差修正的光伏功率预测模型。首先,引入注意力机制(Attention)弥补输入序列长时长短期记忆网络(LSTM)难以保留关键信息的不足,建立LSTM... 为有效分析与利用光伏功率预测模型中以特定规律分布的预测误差,提出基于LSTM-Attention和CNN-BiGRU误差修正的光伏功率预测模型。首先,引入注意力机制(Attention)弥补输入序列长时长短期记忆网络(LSTM)难以保留关键信息的不足,建立LSTM-Attention的预测模型对光伏功率进行初步预测。其次,将卷积神经网络(CNN)在非线性特征提取上的优势与双向门控循环单元(BiGRU)在防止多种特征相互干扰的优势相结合,搭建CNN-BiGRU误差预测模型对可能产生的误差进行预测,从而对初步预测结果进行修正。经过实例分析表明:与未经误差修正的预测结果进行对比,经CNN-BiGRU误差预测模型进行误差修正后在不同天气类型中均能有效提高预测精度。 展开更多
关键词 光伏功率预测 深度学习 误差修正 注意力机制 长短期神经网络 双向门控循环单元
在线阅读 下载PDF
基于人工神经网络的自然语言处理技术研究 被引量:2
6
作者 陈运财 《工程技术研究》 2024年第8期93-95,共3页
文章探讨了基于人工神经网络的自然语言处理技术,首先,阐述了人工神经网络的定义、结构、工作原理,以及与深度学习的关系。其次,详细研究了基于人工神经网络的自然语言处理技术,包括神经网络模型、词嵌入技术、循环神经网络、长短期记... 文章探讨了基于人工神经网络的自然语言处理技术,首先,阐述了人工神经网络的定义、结构、工作原理,以及与深度学习的关系。其次,详细研究了基于人工神经网络的自然语言处理技术,包括神经网络模型、词嵌入技术、循环神经网络、长短期记忆网络、转换器模型与自注意力机制等,并分析了这些技术面临的挑战。最后,通过实验设计与结果分析验证了所提出方法的有效性。文章研究内容对于推动自然语言处理技术的发展和应用具有重要意义。 展开更多
关键词 自然语言处理技术 人工神经网络 循环神经网络 长短期记忆网络 转换器模型 自注意力机制
在线阅读 下载PDF
基于深度学习的基坑开挖引起地表位移时序预测 被引量:1
7
作者 唐浩然 胡垚 +3 位作者 雷华阳 路军富 刘婷 王凯 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第S02期236-241,共6页
为更精准预测基坑工程中数据的时间特性,结合卷积神经网络CNN模型与两种单一时间序列神经网络模型长短期记忆网络LSTM模型、门控循环单元GRU模型,建立混合时间序列神经网络CNN-LSTM模型、CNN-GRU模型。基于杭州某邻近既有车站基坑开挖工... 为更精准预测基坑工程中数据的时间特性,结合卷积神经网络CNN模型与两种单一时间序列神经网络模型长短期记忆网络LSTM模型、门控循环单元GRU模型,建立混合时间序列神经网络CNN-LSTM模型、CNN-GRU模型。基于杭州某邻近既有车站基坑开挖工程,采用滚动预测方法建立基坑开挖引起邻近地铁车站地表沉降数据集。通过平均绝对误差MAE、平均相对误差MAPE和均方根误差RMSE3种评价指标对预测结果进行评价。结果表明:CNN-GRU模型预测效果最优,CNN-LSTM模型次之,其次是GRU模型,最后是LSTM模型。CNN-LSTM混合网络模型相较于LSTM模型对3种评价指标分别降低了24.4%,53.8%,4.1%,CNN-GRU混合网络模型相较于GRU模型分别降低了13.9%,49.1%,1%。 展开更多
关键词 基坑开挖 深度学习 卷积神经网络 长短期记忆网络 门控循环单元
在线阅读 下载PDF
基于GWO-GRU的光伏发电功率预测
8
作者 陈庆明 廖鸿飞 +1 位作者 孙颖楷 曾亚森 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期438-444,共7页
针对长短期记忆网络(LSTM)应用于光伏发电功率预测时存在的耗时长或精准度低的问题,提出基于灰狼算法(GWO)优化门控循环单元(GRU)的光伏发电功率预测模型。通过GWO算法优化GRU模型的超参数,以近似最优参数建立光伏发电功率预测模型。结... 针对长短期记忆网络(LSTM)应用于光伏发电功率预测时存在的耗时长或精准度低的问题,提出基于灰狼算法(GWO)优化门控循环单元(GRU)的光伏发电功率预测模型。通过GWO算法优化GRU模型的超参数,以近似最优参数建立光伏发电功率预测模型。结果表明,长时功率预测时,GWO-GRU模型的均方根误差更低、拟合系数更高、耗时更少,比传统LSTM模型的平均绝对误差降低10.20%;短时功率预测时,GWO-GRU模型在3种典型天气条件下不仅预测的平均误差最低、稳定性最强,而且比GWO-LSTM模型的平均用时节省17.24%。不同时长的功率预测表明,GWO-GRU相对于LSTM光伏功率预测效果更佳。 展开更多
关键词 光伏发电 功率预测 门控循环单元 灰狼算法 长短期记忆网络 时间序列
在线阅读 下载PDF
基于LSTM的海上LNG转驳系统泄漏事故预测方法研究 被引量:2
9
作者 邓陈辉 张纪涵 《力学与实践》 2024年第3期500-510,共11页
在海上液化天然气(liquefied natural gas,LNG)转驳系统中,一旦发生泄漏事故,其后果将极其严重,可能引发火灾、爆炸、中毒等危害。液化天然气泄漏事故发生速度迅猛,因此如何快速进行泄漏扩散的预测对于应对突发事件下的人员疏散和设备... 在海上液化天然气(liquefied natural gas,LNG)转驳系统中,一旦发生泄漏事故,其后果将极其严重,可能引发火灾、爆炸、中毒等危害。液化天然气泄漏事故发生速度迅猛,因此如何快速进行泄漏扩散的预测对于应对突发事件下的人员疏散和设备保护至关重要。本研究构建了一种基于长短期记忆神经网络(long short-term memory,LSTM)的海上液化天然气转驳系统泄漏扩散预测模型,利用流体动力学仿真计算,获取了大量的基础数据集,然后通过训练,能够有效地对气体扩散浓度进行准确预测,所得结果的均方差和平均绝对误差均低于门控循环单元(gated recurrent unit,GRU)神经网络模型和反向传播神经网络模型。 展开更多
关键词 海上液化天然气转驳系统 泄漏事故 长短期记忆神经网络 门控循环单元 反向传播
在线阅读 下载PDF
基于Informer算法的病毒传播预测研究 被引量:1
10
作者 常万杰 刘琳琳 +2 位作者 曹宇 曹杨 魏海平 《辽宁石油化工大学学报》 CAS 2024年第1期80-88,共9页
新冠肺炎病毒等疫情受多种复杂现实因素的影响,因此疫情的发展存在不确定性。为了解决基于传染病仓室模型受自身诸多理想假设条件的限制而导致疫情预测结果误差较大的问题,采用基于深度学习的时序预测模型对疫情发展进行预测,建立了一... 新冠肺炎病毒等疫情受多种复杂现实因素的影响,因此疫情的发展存在不确定性。为了解决基于传染病仓室模型受自身诸多理想假设条件的限制而导致疫情预测结果误差较大的问题,采用基于深度学习的时序预测模型对疫情发展进行预测,建立了一种基于Transformer模型的Informer模型,并将注意力机制和蒸馏机制应用到疫情数据的时序预测中。以门限自回归(Threshold AutoRegressive, TAR)模型和多种主流的循环神经类时序预测模型作为对比模型,通过仿真实验,对中国、美国和英国的疫情数据当前尚存感染人数进行短期预测,并以均方根误差(RMSE)和平均绝对误差(MAE)为评价指标,选择最佳模型进行了中长期的预测。结果表明,无论是RMSE还是MAE,Informer模型的指标值都是最优的,表明Informer模型对中国、美国和英国疫情的预测精度比其他对比模型高。最后,使用Informer模型对中国、美国和英国的疫情发展进行了中长期预测。 展开更多
关键词 新冠肺炎病毒疫情 门限自回归 长短期记忆网络 卷积记忆网络 门控循环单元网络 时序卷积网络 Informer算法
在线阅读 下载PDF
基于电商评论的文本情感分类效果研究
11
作者 计文丽 《科学技术创新》 2024年第3期100-105,共6页
挖掘分析评论文本的情感倾向成为近年来自然语言处理领域的研究热点之一。本文以挖掘京东商城商品评论数据价值为研究视角,以深度学习中的循环神经网络为理论基础,将循环神经网络的各变体模型应用到文本情感分类任务中,对比不同改进模... 挖掘分析评论文本的情感倾向成为近年来自然语言处理领域的研究热点之一。本文以挖掘京东商城商品评论数据价值为研究视角,以深度学习中的循环神经网络为理论基础,将循环神经网络的各变体模型应用到文本情感分类任务中,对比不同改进模型的评论文本分类效果。本文首先研究了循环神经网络的变体模型长短期记忆模型LSTM、门控循环单元模型GRU在京东商品评论文本上的分类效果。实验表明,GRU模型在训练过程中的准确率更高且更早达到优化值,总体上GRU网络模型在文本分类上的效果优于LSTM网络模型。其次研究了以情感词驱动的、基于循环神经网络各变体模型的注意力神经网络模型,将各深度神经网络模型与注意力机制相结合,对比分析各组合模型的情感分类效果。实验表明,引入注意力机制的神经网络模型,较传统网络模型分类准确率都有所提升,且会更快地达到优化值。 展开更多
关键词 情感分类 循环神经网络 长短期记忆 门控循环单元 注意力机制
在线阅读 下载PDF
基于LSTM循环神经网络的故障时间序列预测 被引量:365
12
作者 王鑫 吴际 +3 位作者 刘超 杨海燕 杜艳丽 牛文生 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第4期772-784,共13页
有效地预测使用阶段的故障数据对于合理制定可靠性计划以及开展可靠性维护活动等具有重要的指导意义。从复杂系统的历史故障数据出发,提出了一种基于长短期记忆(LSTM)循环神经网络的故障时间序列预测方法,包括网络结构设计、网络训练和... 有效地预测使用阶段的故障数据对于合理制定可靠性计划以及开展可靠性维护活动等具有重要的指导意义。从复杂系统的历史故障数据出发,提出了一种基于长短期记忆(LSTM)循环神经网络的故障时间序列预测方法,包括网络结构设计、网络训练和预测过程实现算法等,进一步以预测误差最小为目标,提出了一种基于多层网格搜索的LSTM预测模型参数优选算法,通过与多种典型时间序列预测模型的实验对比,验证了所提出的LSTM预测模型及其参数优选算法在故障时间序列分析中具有很强的适用性和更高的准确性。 展开更多
关键词 长短期记忆(LSTM)模型 循环神经网络 故障时间序列预测 多层网格搜索 深度学习
在线阅读 下载PDF
基于循环神经网络算法的水库调度模拟 被引量:7
13
作者 汤正阳 张迪 +3 位作者 林俊强 刘毅 彭期冬 尚毅梓 《水电能源科学》 北大核心 2021年第5期83-86,70,共5页
为探索深度学习算法在水库调度领域的应用,利用网络爬虫技术,收集了溪洛渡水电站的调度运行数据,基于RNN、LSTM、GRU3种循环神经网络,学习电站现有调度规则,构建了溪洛渡水库的出流量预测模型,并探究不同参数设定对模型精度和计算速度... 为探索深度学习算法在水库调度领域的应用,利用网络爬虫技术,收集了溪洛渡水电站的调度运行数据,基于RNN、LSTM、GRU3种循环神经网络,学习电站现有调度规则,构建了溪洛渡水库的出流量预测模型,并探究不同参数设定对模型精度和计算速度的影响,对比了3种模型的模拟性能,分析了影响水库调度的主要因素。研究结果表明,隐层数、训练批量、迭代次数、隐层节点数和批量值是影响模型精度和计算速度的主要参数;3种模型具备良好的学习能力,能够根据水库的历史调度数据,学习应对不同场景的调度规则,生成出流方案,可为调度决策方案的制定提供参考依据。 展开更多
关键词 水库调度 出流量预测 循环神经网络 长短期记忆网络 门限循环单元网络
在线阅读 下载PDF
一种改进的医疗文本分类模型:LS-GRU 被引量:7
14
作者 李强 李瑶坤 +1 位作者 夏书月 康雁 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第7期938-942,961,共6页
为了帮助低年资医生阅读胸部CT影像,并更加精确高效地为临床医生反馈影像报告结果,提出一种改进GRU深度学习框架LS-GRU,用来解决影像报告文本分类问题,即可以根据影像科医生描述,自动反馈给临床医生诊断建议.数据来源于呼吸科影像报告1 ... 为了帮助低年资医生阅读胸部CT影像,并更加精确高效地为临床医生反馈影像报告结果,提出一种改进GRU深度学习框架LS-GRU,用来解决影像报告文本分类问题,即可以根据影像科医生描述,自动反馈给临床医生诊断建议.数据来源于呼吸科影像报告1 168例,选择了两种描述相近的疾病(肺气肿和肺炎)进行分类,其中肺气肿患者报告大约652例,肺炎约516例.分别验证GRU、BiGRU及LSTM等模型,实验结果表明,LS-GRU模型分类更精确,且具有较高的鲁棒性. 展开更多
关键词 深度学习 医疗文本分类 GRU 慢阻肺 LSTM
在线阅读 下载PDF
基于Transformer的机动目标跟踪技术 被引量:2
15
作者 党晓方 蔡兴雨 《电子科技》 2023年第9期86-92,共7页
为解决递归神经网络(Recurrent Neural Network,RNN)和长短期记忆网络(Long Short-Term Memory,LSTM)在跟踪机动目标时,由于序列过长容易出现梯度消失和梯度爆炸导致目标发生机动后跟踪效果变差的问题,文中构建了一种基于Transformer的... 为解决递归神经网络(Recurrent Neural Network,RNN)和长短期记忆网络(Long Short-Term Memory,LSTM)在跟踪机动目标时,由于序列过长容易出现梯度消失和梯度爆炸导致目标发生机动后跟踪效果变差的问题,文中构建了一种基于Transformer的网络(Transformer-Based Network,TBN)来跟踪机动目标。该网络使用基于注意力机制设计的编码器提取目标序列的历史航迹特征,提高对目标机动情况的捕获能力。使用基于卷积网络设计的解码器输出最终的航迹序列,提高机动目标跟踪能力。通过中心最大值(Center-Max,CM)归一化方法,将所有序列减去其初值,降低了网络学习的复杂度,增强了网络的泛化性。实验结果证明,在存在机动情况的大规模航迹数据集下,与长短期记忆网络相比,CM归一化和TBN相组合的方法的位置精度提高了11.2%,速度精度提高了41.9%。文中所提方法在观测值存在缺失时仍能正确跟踪目标。 展开更多
关键词 机动目标跟踪 注意力机制 Transformer网络 循环神经网络 长短期记忆网络 归一化 状态空间模型 神经网络
在线阅读 下载PDF
基于深度LSTM神经网络的人体服装压力信息预测 被引量:8
16
作者 韩韬 郝矿荣 +1 位作者 丁永生 唐雪嵩 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期755-761,共7页
提出了一种深度长短时记忆(LSTM)神经网络结构,用以在穿着运动紧身衣时,由人体某一个部位的压力信息预测其他几个关键部位的压力信息,进而实现人体上半身全部关键点的压力信息数据预测。通过采用柔性压力阵列收集不同人体穿着不同材质... 提出了一种深度长短时记忆(LSTM)神经网络结构,用以在穿着运动紧身衣时,由人体某一个部位的压力信息预测其他几个关键部位的压力信息,进而实现人体上半身全部关键点的压力信息数据预测。通过采用柔性压力阵列收集不同人体穿着不同材质和尺寸的运动紧身衣时的压力信息,在配置图形处理器(GPU)的工作站上得出较好的运算结果。实验结果证明,所提出的深度LSTM神经网络结构比其他算法具有更高的预测准确率。 展开更多
关键词 长短时记忆 深度学习 循环神经网络 人体模型 服装压力
在线阅读 下载PDF
基于EWT-GRU-RR的配电网短期电力负荷预测模型 被引量:7
17
作者 白星振 赵康 +4 位作者 葛磊蛟 王慧 李晶 李华 牛峰 《山东科技大学学报(自然科学版)》 CAS 北大核心 2023年第5期77-87,共11页
随着间歇分布式电源的大规模并入,电力负荷的波动性和非线性特征日益明显,现有单一预测模型较难实现精准预测。本研究提出一种经验小波变换(EWT)、门控循环单元(GRU)和岭回归(RR)相结合的短期电力负荷预测模型EWT-GRU-RR。首先,应用灰... 随着间歇分布式电源的大规模并入,电力负荷的波动性和非线性特征日益明显,现有单一预测模型较难实现精准预测。本研究提出一种经验小波变换(EWT)、门控循环单元(GRU)和岭回归(RR)相结合的短期电力负荷预测模型EWT-GRU-RR。首先,应用灰色关联度选取与负荷高相关性的气象耦合因素,作为相似日的分类指标;然后,采用皮尔逊系数法对类别内的负荷进行最佳相似日选取以减小计算规模;接着,采用EWT将相似日负荷数据分解得到不同频率的负荷模态序列;最后,采用GRU与RR分别对不同频率模态序列进行多步预测,并将预测分量叠加得到最终负荷预测结果。实验结果表明,本研究所提模型的预测误差较单一预测模型GRU减少了77%以上,较支持向量机回归(SVR)减少了75%以上,较先采用经验模态分解(EMD)进行分解再采用径向基函数神经网络(RBF)和RR组合预测模型EMD-RBF-RR减少了75%以上,较先采用EMD进行分解再采用GRU和RR组合预测模型EMD-GRU-RR减少了76%以上,有效提高了负荷预测精度。 展开更多
关键词 配电网 经验小波变换 门控循环单元 岭回归 短期电力负荷 预测模型
在线阅读 下载PDF
基于长短时记忆循环神经网络的北京市糖尿病合并呼吸系统疾病患者入院预测研究 被引量:1
18
作者 朱倩 章萌 +6 位作者 胡耀余 徐小林 陶丽新 张杰 罗艳侠 郭秀花 刘相佟 《浙江大学学报(医学版)》 CAS CSCD 北大核心 2022年第1期1-9,共9页
目的:比较广义相加模型(GAM)和长短时记忆循环神经网络(LSTM-RNN)对糖尿病合并呼吸系统疾病患者入院频数的预测效果。方法:收集2014年1月1日至2019年12月31日北京市大气污染物、气象因素和呼吸系统疾病入院数据,基于LSTM-RNN预测糖尿病... 目的:比较广义相加模型(GAM)和长短时记忆循环神经网络(LSTM-RNN)对糖尿病合并呼吸系统疾病患者入院频数的预测效果。方法:收集2014年1月1日至2019年12月31日北京市大气污染物、气象因素和呼吸系统疾病入院数据,基于LSTM-RNN预测糖尿病合并呼吸系统疾病患者入院频数并与GAM对比,模型评价采用五折交叉验证法。结果:与GAM相比,LSTM-RNN具有较低的预测误差[均方根误差(RMSE)分别为21.21±3.30和46.13±7.60,P<0.01;平均绝对误差(MAE)分别为14.64±1.99和36.08±6.20,P<0.01]和较高的拟合优度(R^(2)值分别为0.79±0.06和0.57±0.12,P<0.01)。在性别分层中,预测女性入院频数时,LSTM-RNN三项指标均优于GAM(均P<0.05);预测男性入院频数时,两模型误差评价指标差异无统计学意义(均P>0.05)。在季节分层中,预测温暖季节的入院频数时,LSTM-RNN的RMSE和MAE均低于GAM(均P<0.05),R2值差异无统计学意义(P>0.05);预测寒冷季节入院频数时,两种模型的RMSE、MAE和R2值差异均无统计学意义(均P>0.05)。在功能区分层中,预测首都功能核心区入院频数时,LSTM-RNN的RMSE、MAE和R2值均优于GAM(均P<0.05)。结论:LSTM-RNN预测误差较小,拟合程度优,可作为污染天气提前精准配置医疗资源的预测手段。 展开更多
关键词 长短时记忆循环神经网络 广义相加模型 呼吸系统疾病 糖尿病 日入院频数 预测
在线阅读 下载PDF
基于LSTM-GRU的污水水质预测模型研究 被引量:6
19
作者 邹可可 李中原 +2 位作者 穆小玲 李铁生 于福荣 《能源与环保》 2021年第12期59-63,共5页
水质预测对水资源管理及水体保护至关重要,为提高污水水质预测模型准确率,考虑到水质参数是一个动态的时间序列,在研究RNN神经网络模型基础上,引入一种改进的长—短记忆网络结构(LSTM-GRU)来增加RNN的隐层,GRU和LSTM采用门结构代替标准... 水质预测对水资源管理及水体保护至关重要,为提高污水水质预测模型准确率,考虑到水质参数是一个动态的时间序列,在研究RNN神经网络模型基础上,引入一种改进的长—短记忆网络结构(LSTM-GRU)来增加RNN的隐层,GRU和LSTM采用门结构代替标准RNN结构中的隐藏单元,可以选择性地记忆重要信息而忘记不重要信息,从而高效学习历史水质参数信息,使得预测结果更加精确。通过仿真分析,本文采用的LSTM-GRU模型与传统的污水水质参数预测模型相比,LSTM-GRU模型的泛化能力更强,预测精度更高,有效性及实用性更强。 展开更多
关键词 水质预测 神经网络 长—短记忆模型 门控循环单元
在线阅读 下载PDF
基于贝叶斯优化的CNN-GRU短期电力负荷预测 被引量:14
20
作者 吴永洪 张智斌 《现代电子技术》 2023年第20期125-129,共5页
为了提高短期电力负荷预测精度,针对负荷数据时序性与非线性的特点,提出一种基于贝叶斯优化的CNNGRU短期电力负荷预测模型。首先,将电力负荷数据按时间滑动窗口构造连续特征作为输入,采用CNN对负荷数据进行特征提取,将特征以时序序列方... 为了提高短期电力负荷预测精度,针对负荷数据时序性与非线性的特点,提出一种基于贝叶斯优化的CNNGRU短期电力负荷预测模型。首先,将电力负荷数据按时间滑动窗口构造连续特征作为输入,采用CNN对负荷数据进行特征提取,将特征以时序序列方式作为GRU网络输入;然后通过GRU网络进行短期负荷预测,构建CNN-GRU预测模型。针对CNN-GRU模型易陷入局部最优以及超参数寻找难的问题,利用贝叶斯优化寻找最优超参数组合,对模型进行超参数优化,构建贝叶斯优化的CNN-GRU短期电力负荷预测模型。实验结果表明,贝叶斯优化的CNN-GRU模型的MAE值比传统的CNN-GRU网络模型降低58%,精度提升1.23%,说明所提模型能够有效提高负荷预测精度,可作为短期电力负荷预测工具。 展开更多
关键词 短期电力负荷预测 贝叶斯优化 卷积神经网络(CNN) 门控循环单元(GRU) 超参数优化 组合预测模型
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部