期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
1
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
基于词嵌入和特征融合的恶意软件检测研究 被引量:1
2
作者 师智斌 孙文琦 +1 位作者 窦建民 于孟洋 《信息安全研究》 北大核心 2025年第5期412-419,共8页
针对现有传统方法存在特征提取和表示受限、无法同时捕获API序列的空间语义特征和时序特征、无法捕获能决定目标任务的关键特征信息等问题,利用自然语言处理领域的词嵌入技术和多模型特征抽取以及特征融合技术,提出一种基于词嵌入和特... 针对现有传统方法存在特征提取和表示受限、无法同时捕获API序列的空间语义特征和时序特征、无法捕获能决定目标任务的关键特征信息等问题,利用自然语言处理领域的词嵌入技术和多模型特征抽取以及特征融合技术,提出一种基于词嵌入和特征融合的恶意软件检测方法.首先使用自然语言处理领域的词嵌入技术对API序列编码,得到其语义特征编码表示;然后分别利用多重卷积网络和Bi-LSTM网络提取API序列的n-gram局部空间特征和时序特征;最后利用自注意力机制对捕获的特征进行关键位置信息的深度融合,通过刻画深层恶意行为特征实现分类任务.实验结果表明,在二分类任务中,该方法准确率达到94.79%,相较于传统机器学习方法平均提高了12.37%,比深度学习方法平均提高5.78%.在多分类任务中,该方法的准确率也达到91.95%,能够有效地提高对恶意软件的检测准确率. 展开更多
关键词 恶意软件检测 软件调用序列 多重卷积网络 长短期记忆网络 特征融合
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测
3
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
滚动轴承的退化特征信息融合与剩余寿命预测
4
作者 张建宇 王留震 +1 位作者 肖勇 马雅楠 《中国机械工程》 北大核心 2025年第7期1553-1561,共9页
针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融... 针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融合提取关键特征,消除冗余信息。同时,结合BiLSTM模型捕捉时序特征,实现全周期寿命预测。实验结果表明,所提模型优于支持向量回归、极限学习机、卷积神经网络等模型,预测误差更小,泛化能力更强。 展开更多
关键词 稀疏自编码器特征融合 双向长短期记忆网络预测模型 滚动轴承 反双曲特征指标 频域谐波退化因子
在线阅读 下载PDF
多因素融合下基于AGC-LSTM的短时交通速度预测
5
作者 陈雨佳 高明霞 +1 位作者 向万里 莫俊文 《现代电子技术》 北大核心 2025年第18期9-16,共8页
为了更准确地预测快速变化的城市环境中短时交通速度的动态变化,在考虑历史数据、天气因素和周围兴趣点(POI)的基础上,进一步融入路况因素,构建了特征融合组件(EF-Component)。基于现有深度学习模型,研究多种因素作用下融合图卷积网络(G... 为了更准确地预测快速变化的城市环境中短时交通速度的动态变化,在考虑历史数据、天气因素和周围兴趣点(POI)的基础上,进一步融入路况因素,构建了特征融合组件(EF-Component)。基于现有深度学习模型,研究多种因素作用下融合图卷积网络(GCN)、长短期记忆(LSTM)网络和注意力机制的城市短时交通速度预测模型(EF-AGC-LSTM)。先利用特征融合组件将多种影响因素进行综合,再利用GCN和LSTM提取交通速度的时空特征,通过将GCN嵌入到LSTM门控计算中来同步获取数据的时空特征;然后利用注意力机制自动识别并加强关键外部因素的影响特征,提升模型的性能表现。在深圳市罗湖区的速度数据集上进行实例验证,结果显示:与基线模型相比,EF-AGC-LSTM的预测效果有较大提升,与传统的GCN-LSTM模型相比,预测的平均绝对误差(MAE)和均方根误差(RMSE)分别降低4.3%和3.3%,准确率提高1.4%。此外,在引入路况因素后,预测的MAE和RMSE分别降低了1.22%和0.87%。综合考虑多种影响因素可以使得短时交通速度的预测效果得到进一步提升,且EF-AGC-LSTM模型可以良好地实现多因素融合下的短时交通速度预测,满足城市管理的需要。 展开更多
关键词 智能交通 短时交通速度预测 特征融合 组合深度学习 图卷积网络 长短期记忆网络 注意力机制
在线阅读 下载PDF
基于多模态唇部状态识别的语音导航抗干扰系统
6
作者 王晗 陈怡霖 +1 位作者 季钰姣 杜若琳 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期82-90,共9页
针对现有车载语音导航设备易受到车内外噪声干扰、无法准确判定声音信号来源的问题,提出了一种基于唇部状态识别的语音导航抗干扰系统.通过摄像头实时识别驾驶员唇部状态,准确判定驾驶员声音信号的起止时间端点,进而控制语音导航输入信... 针对现有车载语音导航设备易受到车内外噪声干扰、无法准确判定声音信号来源的问题,提出了一种基于唇部状态识别的语音导航抗干扰系统.通过摄像头实时识别驾驶员唇部状态,准确判定驾驶员声音信号的起止时间端点,进而控制语音导航输入信号开启和关闭,增强驾驶员对语音导航的控制权限,减少车内外的噪声干扰.为保证唇部状态识别的准确性和鲁棒性,提出了一种基于关键点-外观短时特征融合的多模态唇部状态识别网络,进行了关键点短时特征有效性试验、多模态特征融合的唇部状态识别消融试验、实验室模拟环境和真实车载环境下的语音导航抗干扰试验.结果表明,文中提出的关键点短时特征算子可增强唇部状态变化表征能力14%以上,关键点-外观特征融合的唇部状态识别网络通过特征互补提升识别准确性8.98%以上.基于该网络的语音导航抗干扰系统准确性高(92.6%)、实时性好(检测速度为35帧/s);在驾驶员左、右侧面超过70°的大幅度头部姿态变化下,能有效减少车内外噪声对导航语音控制的干扰,表现出较高的鲁棒性. 展开更多
关键词 语音导航抗干扰系统 唇部状态识别 关键点 外观特征 特征融合 长短期记忆网络
在线阅读 下载PDF
基于双路径多尺度特征融合的4mC位点预测方法
7
作者 黄泽霞 李煨 +1 位作者 邵春莉 耿林 《实验技术与管理》 北大核心 2025年第4期68-77,共10页
针对传统4mC位点预测方法成本高、耗时长问题,提出基于双路径多尺度特征融合的4mC位点预测方法。首先构建以卷积层、双向长短期记忆网络与注意力机制为核心的多层次特征提取模块,获取序列间长期依赖的关键位置信息,提升检测的准确性;然... 针对传统4mC位点预测方法成本高、耗时长问题,提出基于双路径多尺度特征融合的4mC位点预测方法。首先构建以卷积层、双向长短期记忆网络与注意力机制为核心的多层次特征提取模块,获取序列间长期依赖的关键位置信息,提升检测的准确性;然后设计以改进SENet网络为核心的多尺度特征提取模块,实现特征的多尺度细节表达,提升特征的表征能力;进而提出基于并行特征融合的分类优化方法,进一步提升特征的捕获效果;最后设计以带类权重损失函数为核心的输出模块,实现对样本之间不平衡性的调节。实验结果表明,所提方法可有效实现多物种环境下4mC位点的识别,并且预测准确率和鲁棒性均优于现有方法。 展开更多
关键词 4mC位点预测 多尺度特征融合 双向长短期记忆网络 SENet网络
在线阅读 下载PDF
基于多尺度融合和时空特征的网络入侵检测模型 被引量:3
8
作者 龚星宇 来源 +1 位作者 李娜 雷璇 《计算机工程与设计》 北大核心 2024年第6期1640-1646,共7页
针对入侵检测模型提取特征能力不足,且流量数据中含冗余噪声的问题,提出一种基于多尺度融合和时空特征的ML-PFN入侵检测模型。采用多尺度特征融合技术分别提取数据中浅层特征信息和深层特征信息,使模型学习的特征更加丰富;采用软阈值函... 针对入侵检测模型提取特征能力不足,且流量数据中含冗余噪声的问题,提出一种基于多尺度融合和时空特征的ML-PFN入侵检测模型。采用多尺度特征融合技术分别提取数据中浅层特征信息和深层特征信息,使模型学习的特征更加丰富;采用软阈值函数和注意力机制自动选择合适的阈值,减少噪声及不相关信息对模型的干扰;融合时空特征构成多尺度空间特征提取长短时记忆-并行特征网络(MSFE LSTM-parallel feature network, ML-PFN)模型,并应用于网络入侵检测。通过3个公开数据集进行性能评估,实验结果表明,ML-PFN模型对比其它5种分类模型各项指标效果最好,在训练时长适中的同时准确率达到96.45%。 展开更多
关键词 入侵检测 冗余噪声 多尺度融合 时空特征 软阈值 注意力机制 长短时记忆
在线阅读 下载PDF
基于链接关系预测的弯曲密集型商品文本检测 被引量:1
9
作者 耿磊 李嘉琛 +2 位作者 刘彦北 李月龙 李晓捷 《天津工业大学学报》 CAS 北大核心 2024年第4期50-59,74,共11页
针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷... 针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷积神经网络和自注意力并行的双分支结构提取局部和全局特征,并加入空洞特征增强模块(DFM)减少深层特征图在降维过程中信息的丢失;上采样采用特征金字塔与多级注意力融合模块(MAFM)相结合的方式进行多级特征融合以增强文本特征间的潜在联系,通过文本检测器从上采样输出的特征图中检测文本组件;在链接关系预测网络中,采用基于图卷积网络的关系推理框架预测文本组件间的深层相似度,采用双向长短时记忆网络将文本组件聚合为文本实例。为验证RRNet的检测性能,构建了一个由商品包装图片组成的文本检测数据集(text detection dataset composed of commodity packaging,CPTD1500)。实验结果表明:RPTNet不仅在公开文本数据集CTW-1500和Total-Text上取得了优异的性能,而且在CPTD1500数据集上的召回率和F值分别达到了85.4%和87.5%,均优于当前主流算法。 展开更多
关键词 文本检测 卷积神经网络 自注意力 特征融合 图卷积网络 双向长短时记忆网络
在线阅读 下载PDF
基于改进Transformer-BiLSTM的人体活动识别模型 被引量:2
10
作者 孙巍伟 毛亦鹏 +1 位作者 郑家春 梁毅玮 《电子测量技术》 北大核心 2024年第17期54-61,共8页
针对可穿戴传感器采集的时间序列往往具有维度高、噪声大等缺点导致活动识别方法准确率下降的问题,提出了基于改进Transformer-BiLSTM的人体活动识别模型。模型采用了Transformer编码器在处理长距离依赖和并行化计算方面的优势来提高序... 针对可穿戴传感器采集的时间序列往往具有维度高、噪声大等缺点导致活动识别方法准确率下降的问题,提出了基于改进Transformer-BiLSTM的人体活动识别模型。模型采用了Transformer编码器在处理长距离依赖和并行化计算方面的优势来提高序列特征提取的效率;随后将特征传递给添加了跳跃残差连接的双向长短期记忆网络,两次残差连接代替大量卷积层的同时保留了有效信息;提出了一种集成有时间信息编码的注意力层增强了模型的表达能力和对时序数据的理解能力。实验结果表明,该模型在公开数据集上的准确率达到了98.38%,有效提高了人体活动识别的准确率。 展开更多
关键词 步态识别 深度学习 TRANSFORMER 双向长短期记忆网络 特征融合
在线阅读 下载PDF
基于多特征融合时差网络的带式输送机区域违规行为识别 被引量:1
11
作者 马天 姜梅 +2 位作者 杨嘉怡 张杰慧 丁旭涵 《工矿自动化》 CSCD 北大核心 2024年第7期115-122,共8页
现有的煤矿井下带式输送机区域违规行为(如攀爬、跨越、倚靠带式输送机等)识别方法对特征提取不充分、难以考虑到行为时间差异,导致违规行为识别准确率不高。针对该问题,基于ResNet50模型,提出了一种基于多特征融合时差网络(MFFTDN)的... 现有的煤矿井下带式输送机区域违规行为(如攀爬、跨越、倚靠带式输送机等)识别方法对特征提取不充分、难以考虑到行为时间差异,导致违规行为识别准确率不高。针对该问题,基于ResNet50模型,提出了一种基于多特征融合时差网络(MFFTDN)的带式输送机区域违规行为识别方法,将多特征融合和时间差分进行结合,对不同时间段的行为进行多特征融合。首先在原始模型ResNet50的第2和第3阶段引入短期多特征融合(STMFF)模块,将来自多个连续帧的时间和特征拼接在一起,再对融合后的特征进行时间差分计算,即相邻帧的特征差值,以在短期内捕捉局部动作变化。然后在原始模型ResNet50的第4阶段引入长期多特征融合(LTMFF)模块,将来自连续帧的短期多特征拼接在一起,再对相邻时间点的特征进行时间差分计算,以获取行为的长期多特征。最后将融合后的特征进行分类,输出识别结果。实验结果表明:①该方法的平均精度和准确率较原始模型ResNet50分别提高了8.18%和8.47%,说明同时引入STMFF和LTMFF模块能够有效提取到不同时间段的多特征信息。②该方法在自建煤矿井下带式输送机区域违规行为数据集上的准确率为89.62%,平均精度为89.30%,模型的参数量为197.2×10^(6)。③Grad−CAM热力图显示,该方法能够更有效地关注到违规行为的关键区域,精确捕捉到井下带式输送机区域的违规行为。 展开更多
关键词 带式输送机 不安全行为 违规行为识别 短期多特征融合 长期多特征融合 多特征融合时差网络 时间差分
在线阅读 下载PDF
基于多尺度注意力特征融合的恶意URL检测研究
12
作者 马栋林 陈伟杰 +1 位作者 赵宏 宋佳佳 《电子测量技术》 北大核心 2024年第20期15-23,共9页
针对当前恶意URL检测模型在处理复杂结构和多样化字符组合的URL时,存在特征提取单一和检测精度不高的问题,提出了一种基于多尺度注意力特征融合的恶意URL检测模型。首先,采用Character Embeddings和DistilBERT方法分别对字符和单词进行... 针对当前恶意URL检测模型在处理复杂结构和多样化字符组合的URL时,存在特征提取单一和检测精度不高的问题,提出了一种基于多尺度注意力特征融合的恶意URL检测模型。首先,采用Character Embeddings和DistilBERT方法分别对字符和单词进行编码,以捕获URL字符串中字符级和词级特征表示。其次,通过改进卷积神经网络(CNN)提取不同尺度的字符结构特征和词级语义特征,并结合双向长短期记忆网络(BiLSTM)进一步提取深层次序列特征。此外,为了实现字符级与词级多尺度特征的动态融合,创新性地引入注意力特征融合模块(AFF),有效降低信息冗余并提升对长距离序列特征的提取能力。实验结果表明,所提模型与其他基准模型相比,准确率提升了0.32%~4.7%,F1分数提升了0.46%~5.5%,并在ISCX-URL2016等数据集上也达到了较好的测效果。 展开更多
关键词 恶意URL检测 多尺度特征 卷积神经网络 双向长短时记忆网络 注意力特征融合
在线阅读 下载PDF
基于电子鼻和电子舌与1D-CNN-LSTM模型的花椒产地快速溯源检测 被引量:4
13
作者 张擎 杨晓婧 +4 位作者 金鑫宁 陈立同 高文 王志强 姜春磊 《传感技术学报》 CAS CSCD 北大核心 2024年第5期904-912,共9页
针对不同产地花椒产品的溯源问题,提出一种基于电子鼻和电子舌结合一维卷积神经网络(One Dimension-Convolutional Neural Networks,1D-CNN)-长短期记忆网络(Long Short-Term Memory,LSTM)混合模型的花椒产地快速检测方法。以5个不同产... 针对不同产地花椒产品的溯源问题,提出一种基于电子鼻和电子舌结合一维卷积神经网络(One Dimension-Convolutional Neural Networks,1D-CNN)-长短期记忆网络(Long Short-Term Memory,LSTM)混合模型的花椒产地快速检测方法。以5个不同产地的花椒为试验对象,采用电子舌和电子鼻分别采集花椒样本的味觉和嗅觉指纹图谱信息,根据信号特点分别设计1D-CNN提取味觉和嗅觉信号中的局部空间特征,然后采用LSTM捕捉信号的时间序列特征,最后采用多层感知机融合两种特征并进行分类识别。实验结果表明,电子鼻与电子舌信息融合对不同产地花椒的分辨准确率优于单一设备,与其他深度模型相比,所提的模型分类准确性更高,其准确率、精确率、召回率、F1分数分别达到99.0%、99.1%、99.0%、0.989。以上研究将为不同产地花椒的快速鉴定提供新的方法,并为其他农产品的产地溯源检测提供新的研究思路。 展开更多
关键词 传感器信号处理 花椒 产地溯源 电子鼻 电子舌 特征融合 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于长短路融合及数据平衡的SAR船舶检测算法 被引量:1
14
作者 张宇 于蕾 +2 位作者 单明广 郑丽颖 梁旭辉 《航天返回与遥感》 CSCD 北大核心 2024年第2期134-143,共10页
针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目... 针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目标检测,避免小目标特征信息的丢失。网络中应用结构重参数化结构提高了模块学习能力。为了满足多尺度目标检测,加入特征金字塔网络,融合多尺度特征。为了应对近岸样本目标检测,设计数据重分配算法,提高了对近岸样本目标的检测精度。实验结果表明:在公开数据集检测时,算法的平均精度(Average Precision,AP)达到97.50%,优于主流目标检测算法。该方法为提高SAR图像中小目标和近岸样本目标检测精度提供了新的实现方案。 展开更多
关键词 合成孔径雷达图像 船舶检测 长短路特征融合 数据重分配
在线阅读 下载PDF
时间特征与空间特征融合的轻量网络故障诊断方法 被引量:2
15
作者 王仲 姜娇 +2 位作者 张磊 谷泉 赵新光 《机电工程》 CAS 北大核心 2024年第9期1565-1574,共10页
为了解决多传感器数据间存在信息交叉、特征重复,导致模型训练精度低的问题,对滚动轴承在声辐射信号下的故障诊断进行了研究,提出了一种时间特征与空间特征融合的轻量网络故障诊断(SF-TFNet)方法。首先,利用卷积神经网络提取了原始轴承... 为了解决多传感器数据间存在信息交叉、特征重复,导致模型训练精度低的问题,对滚动轴承在声辐射信号下的故障诊断进行了研究,提出了一种时间特征与空间特征融合的轻量网络故障诊断(SF-TFNet)方法。首先,利用卷积神经网络提取了原始轴承声阵列信号的空间特征(SFs),使用长短时记忆网络(LSTM)提取了声阵列信号中的时域特征(TFs),并对提取的SFs和TFs进行了特征融合,生成了新的特征矩阵;然后,为了消除融合特征带来的重叠特征和信息冗余问题,引入了基于核的主成分分析(KPCA)方法对新生成的特征矩阵进行了非线性降维,去除了特征中的冗余成分,构建了滚动轴承新的时空特征数据集;最后,采用AdaBoost算法对新生成的数据集进行了故障分类,并得到了滚动轴承的最终故障诊断结果。研究结果表明:在半消声室滚动轴承故障实验台测试中,SF-TFNet方法的故障分类精度可以达到99.75%,其分类精度较高、聚类效果明显。在强背景噪声环境下与ResNet、ICNN和AlexNet三种方法进行比较,SF-TFNet方法不仅收敛速度快,而且故障识别精度高,诊断精度最高可达99.25%。为基于多通道的滚动轴承声辐射信号故障诊断提供了理论依据。 展开更多
关键词 滚动轴承 声辐射信号 多信息融合 特征轻量融合 故障诊断 长短时记忆网络 时域特征 基于核的主成分分析
在线阅读 下载PDF
融合声振信号与可见近红外透射光谱的苹果轻度霉心病检测 被引量:2
16
作者 谷家辉 赖丽思 +1 位作者 王凯 张慧 《食品科学》 EI CAS CSCD 北大核心 2024年第23期259-267,共9页
针对单一方法对苹果轻度霉心病检测精度较低的问题,提出基于近红外透射光谱和声振技术的异源信息融合方法,以提升对苹果轻度霉心病的判别能力。针对近红外光谱信号,首先分析不同预处理和特征提取方法对建模效果的影响,完成光谱特征波段... 针对单一方法对苹果轻度霉心病检测精度较低的问题,提出基于近红外透射光谱和声振技术的异源信息融合方法,以提升对苹果轻度霉心病的判别能力。针对近红外光谱信号,首先分析不同预处理和特征提取方法对建模效果的影响,完成光谱特征波段的选择。针对声振信号,利用YSV工程测试与信号分析软件和Pearson相关系数优选7个时域特征。随后,通过特征拼接将光谱特征波段与时域特征组成融合特征向量,分别采用卷积神经网络(convolutional neural networks,CNN)、长短时记忆网络(long short-term memory,LSTM)和CNN-LSTM基于单一源特征和融合特征构建判别模型。通过模型性能分析,融合了近红外透射光谱15个特征波段与7个时域特征的CNN-LSTM组合模型对于轻度霉心病的判别性能最优,测试集的准确率、召回率、特异性和F1分数分别达到了98.31%、97.06%、97.06%和97.90%。实验结果证明本研究提出的可见近红外透射光谱与声振信号特征融合方法可以有效提高苹果轻度霉心病的判别准确率。 展开更多
关键词 可见近红外透射光谱 声振信号 苹果霉心病 特征融合 卷积神经网络-长短时记忆网络
在线阅读 下载PDF
基于场景图感知的跨模态图像描述模型 被引量:1
17
作者 朱志平 杨燕 王杰 《计算机应用》 CSCD 北大核心 2024年第1期58-64,共7页
针对图像描述方法中对图像文本信息的遗忘及利用不充分问题,提出了基于场景图感知的跨模态交互网络(SGC-Net)。首先,使用场景图作为图像的视觉特征并使用图卷积网络(GCN)进行特征融合,从而使图像的视觉特征和文本特征位于同一特征空间;... 针对图像描述方法中对图像文本信息的遗忘及利用不充分问题,提出了基于场景图感知的跨模态交互网络(SGC-Net)。首先,使用场景图作为图像的视觉特征并使用图卷积网络(GCN)进行特征融合,从而使图像的视觉特征和文本特征位于同一特征空间;其次,保存模型生成的文本序列,并添加对应的位置信息作为图像的文本特征,以解决单层长短期记忆(LSTM)网络导致的文本特征丢失的问题;最后,使用自注意力机制提取出重要的图像信息和文本信息后并对它们进行融合,以解决对图像信息过分依赖以及对文本信息利用不足的问题。在Flickr30K和MSCOCO(MicroSoft Common Objects in COntext)数据集上进行实验的结果表明,与Sub-GC相比,SGC-Net在BLEU1(BiLingual Evaluation Understudy with 1-gram)、BLEU4(BiLingual Evaluation Understudy with 4-grams)、METEOR(Metric for Evaluation of Translation with Explicit ORdering)、ROUGE(Recall-Oriented Understudy for Gisting Evaluation)和SPICE(Semantic Propositional Image Caption Evaluation)指标上分别提升了1.1、0.9、0.3、0.7、0.4和0.3、0.1、0.3、0.5、0.6。可见,SGC-Net所使用的方法能够有效提升模型的图像描述性能及生成描述的流畅度。 展开更多
关键词 图像描述 场景图 注意力机制 长短期记忆网络 特征融合
在线阅读 下载PDF
基于多尺度风格自适应的手写维文识别模型 被引量:1
18
作者 闫林 王磊 +2 位作者 艾孜麦提·艾尼瓦尔 杨雅婷 李晓 《计算机工程与设计》 北大核心 2024年第9期2749-2756,共8页
基于字符形态与书写风格的强关联性,提出一种多尺度风格自适应的手写维文识别模型,模型从浅层笔划到深层序列建模多尺度风格特征,提高对手写风格的自适应能力。针对手写维文特点改进Transformer提取多尺度笔划特征;构建多尺度风格自适... 基于字符形态与书写风格的强关联性,提出一种多尺度风格自适应的手写维文识别模型,模型从浅层笔划到深层序列建模多尺度风格特征,提高对手写风格的自适应能力。针对手写维文特点改进Transformer提取多尺度笔划特征;构建多尺度风格自适应模块提取序列特征;构建特征泛化融合模块对笔划特征和序列特征进行深度融合,提升识别效果。实验结果表明,该模型在真实手写维文测试集WER、CER分别下降3.75%、0.19%,在IAM数据集中验证了模型迁移性。 展开更多
关键词 手写维文识别 手写风格 多尺度 特征金字塔网络 视觉自注意力模型 长短期记忆网络 特征融合
在线阅读 下载PDF
基于CNN-BLSTM-XGB的入侵检测 被引量:5
19
作者 徐东方 徐洪珍 邓德军 《计算机工程与设计》 北大核心 2024年第3期676-683,共8页
针对当前网络入侵检测方法存在特征信息提取不全面,多分类检测准确率偏低的问题,提出一种基于CNN-BLSTM-XGB的混合网络入侵检测方法。建立基于卷积神经网络(CNN)与双向长短期记忆网络(BLSTM)的网络结构CNN-BLSTM,用于提取网络入侵数据... 针对当前网络入侵检测方法存在特征信息提取不全面,多分类检测准确率偏低的问题,提出一种基于CNN-BLSTM-XGB的混合网络入侵检测方法。建立基于卷积神经网络(CNN)与双向长短期记忆网络(BLSTM)的网络结构CNN-BLSTM,用于提取网络入侵数据的空间与时间特征;使用Keras序贯模型中的Concatenate层对这两种特征进行融合;用极端梯度提升(XGBoost)取代传统的完全连接层,获取从输入层到融合层的特征信息进行分类。在NSL-KDD和CICIDS2017数据集上分别进行的实验结果表明,该方法可以分别达到99.72%、99.87%的多分类检测准确率,与现有的主流方法比较,具有更高的检测准确率。 展开更多
关键词 入侵检测 时空特征 特征提取 特征融合 卷积神经网络 双向长短期记忆网络 极端梯度提升
在线阅读 下载PDF
基于声信号时频域特征融合的路口车辆检测方法 被引量:1
20
作者 毛盼娣 廖晓文 徐道连 《计算机工程与设计》 北大核心 2024年第12期3764-3771,共8页
针对路口车辆检测分类任务中特征级融合效果不理想问题,提出一种分阶段的特征融合的解决策略。将时域和频域内的特征进行融合,结合传统的长短时记忆网络和卷积神经网络的优势,构建车型分类模型。实验结果表明,所提Conv-BiLSTM模型能够... 针对路口车辆检测分类任务中特征级融合效果不理想问题,提出一种分阶段的特征融合的解决策略。将时域和频域内的特征进行融合,结合传统的长短时记忆网络和卷积神经网络的优势,构建车型分类模型。实验结果表明,所提Conv-BiLSTM模型能够获得超过98%的分类准确度,取得最高98.76%的F1分数。实验结果有效地验证了特征融合的必要性以及分类模型改进的有效性,为解决路口车辆检测分类任务中的问题提供了一种可行的解决方案。 展开更多
关键词 多特征融合 时频分析 车型分类 车辆声信号 车辆检测 长短时记忆网络 卷积神经网络
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部