Letμbe a positive Borel measure on the interval[0,1).The Hankel matrix■with entriesμn,k=μn+k,whereμn=■[0,1)tndμ(t),induces,formally,the operator■where■is an analytic function in.We characterize the measuresμ...Letμbe a positive Borel measure on the interval[0,1).The Hankel matrix■with entriesμn,k=μn+k,whereμn=■[0,1)tndμ(t),induces,formally,the operator■where■is an analytic function in.We characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the Bergman space■,where 0≤α<∞,0<p<∞.We also characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the classical Bloch space■.展开更多
In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality...In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.展开更多
This paper deals with an initial-boundary value problem of a fourth-order parabolic equation involving Logarithmic type p-Laplacian,which could be proposed as a model for the epitaxial growth of thin films.By using th...This paper deals with an initial-boundary value problem of a fourth-order parabolic equation involving Logarithmic type p-Laplacian,which could be proposed as a model for the epitaxial growth of thin films.By using the variational method and the logarithmic type Sobolev inequality,we give some threshold results for blow-up solutions and global solutions,which could be classified by the initial energy.The asymptotic estimates about blow-up time and decay estimate of weak solutions are obtained.展开更多
稻谷籽粒内部水分扩散的快慢决定了干燥速率。本文基于Logarithmic方程,建立稻谷水分传递动力学模型,并分析热风温度(40、50、60、70℃)和风速(0.3、0.4、0.5 m/s)对稻谷(湿基水分含量23.4%)有效水分扩散系数和扩散活化能的影响。结果表...稻谷籽粒内部水分扩散的快慢决定了干燥速率。本文基于Logarithmic方程,建立稻谷水分传递动力学模型,并分析热风温度(40、50、60、70℃)和风速(0.3、0.4、0.5 m/s)对稻谷(湿基水分含量23.4%)有效水分扩散系数和扩散活化能的影响。结果表明:随着干燥温度和风速的上升,稻谷干燥速率提高,同时对应的有效水分扩散系数越大,分别为5.123×10-12~2.141×10-11m^2/s;扩散活化能从32.94 k J/mol增加至36.30 k J/mol;对比常用的5种谷物干燥模型发现,Logarithmic模型对稻谷薄层干燥的拟合度较好,R2>0.997,RMSE<2.810×10^(-3),同时该模型模拟得出的有效水分扩散系数与实际差值均低于3.8×10^(-13)m^2/s,扩散活化能均低于2.53 k J/mol,与实际值基本吻合。展开更多
For p ∈ R, the generalized logarithmic mean Lp(a, b) and Seiffert's mean T(a, b) of two positive real numbers a and b are defined in (1.1) and (1.2) below respectively. In this paper, we find the greatest p ...For p ∈ R, the generalized logarithmic mean Lp(a, b) and Seiffert's mean T(a, b) of two positive real numbers a and b are defined in (1.1) and (1.2) below respectively. In this paper, we find the greatest p and least q such that the double-inequality Lp(a, b) 〈 T(a,b) 〈 Lq(a,b) holds for all a,b 〉 0 and a ≠ b.展开更多
In this article, a law of iterated logarithm for the maximum likelihood estimator in a random censoring model with incomplete information under certain regular conditions is obtained.
In this paper, we present two explicit invalid-curve attacks on the genus 2 hyperelliptic curve over a finite field. First, we propose two explicit attack models by injecting a one-bit fault in a given divisor. Then, ...In this paper, we present two explicit invalid-curve attacks on the genus 2 hyperelliptic curve over a finite field. First, we propose two explicit attack models by injecting a one-bit fault in a given divisor. Then, we discuss the construction of an invalid curve based on the faulted divisor. Our attacks are based on the fact that the Hyperelliptic Curve Scalar Multiplication (HECSM) algorithm does not utilize the curve parameters and We consider three hyperelliptic curves as the attack targets. For curve with security level 186 (in bits), our attack method can get the weakest invalid curve with security level 42 (in bits); there are 93 invalid curves with security level less than 50. We also estimate the theoretical probability of getting a weak hyperelliptic curve whose cardinality is a smooth integer. Finally, we show that the complexity of the fault attack is subexponential if the attacker can freely inject a fault in the input divisor. Cryptosystems based on the genus 2 hyperelliptic curves cannot work against our attack algorithm in practice.展开更多
We consider the logarithmic elliptic equation with singular nonlinearity {Δu+ulogu^(2)+λ/u^(γ)=0,in Ω,u>0,in Ω,u=0,on δΩ,where Ω⊂R^(N)(N≥3)is a bounded domain with a smooth boundary,0<γ<1 andλis a ...We consider the logarithmic elliptic equation with singular nonlinearity {Δu+ulogu^(2)+λ/u^(γ)=0,in Ω,u>0,in Ω,u=0,on δΩ,where Ω⊂R^(N)(N≥3)is a bounded domain with a smooth boundary,0<γ<1 andλis a positive constant.By using a variational method and the critical point theory for a nonsmooth functional,we obtain the existence of two positive solutions.This result generalizes and improves upon recent results in the literature.展开更多
This paper studies numerically the dark incoherent spatial solitons propagating in logarithmically saturable nonlinear media by using a coherent density approach and a split-step Fourier approach for the first time. U...This paper studies numerically the dark incoherent spatial solitons propagating in logarithmically saturable nonlinear media by using a coherent density approach and a split-step Fourier approach for the first time. Under odd and even initial conditions, a soliton triplet and a doublet are obtained respectively for given parameters. Simultaneously, coherence properties associated with the soliton triplet and doublet are discussed. In addition, if the values of the parameters are properly chosen, five and four splittings from the input dark incoherent spatial solitons can also form. Lastly, the grayness of the soliton triplet and that of the doublet are studied, in detail.展开更多
The logarithmic model is often used to describe the relationships between factors.It often gives good statistical characteristics.Yet,in the process of modeling of soil and water conservation,we find out that this“g...The logarithmic model is often used to describe the relationships between factors.It often gives good statistical characteristics.Yet,in the process of modeling of soil and water conservation,we find out that this“good”model cannot guarantee good result.In this paper we make an inquiry into the intrinsic reasons.It is shown that the logarithmic model has the property of enlarging or reducing model errors,and the disadvantages of the logarithmic model are analyzed.展开更多
We investigate a time-independent many-boson system,whose ground states are quasi-degenerate and become infinitely degenerate in the thermodynamic limit.Out of these quasi-degenerate ground states we construct a quant...We investigate a time-independent many-boson system,whose ground states are quasi-degenerate and become infinitely degenerate in the thermodynamic limit.Out of these quasi-degenerate ground states we construct a quantum state that evolves in time with a period that is logarithmically proportional to the number of particles,that is,T~log N.This boson system in such a state is a quantum time crystal as it approaches the ground state in the thermodynamic limit.The logarithmic dependence of its period on the total particle number N makes it observable experimentally even for systems with very large number of particles.Possible experimental proposals are discussed.展开更多
The behavior of logarithmic moments of particle distributions in different rapidity windows is discussed for pp and PA collisions at high energies.The special role of those events,having no-particle in the rapidity wi...The behavior of logarithmic moments of particle distributions in different rapidity windows is discussed for pp and PA collisions at high energies.The special role of those events,having no-particle in the rapidity window,is stressed.展开更多
For anyα∈R,the logarithmic Bloch space BLαconsists of those functions f which are analytic in the unit disk D with.■In this paper,we characterize the closure of the analytic functions of bounded mean oscillation B...For anyα∈R,the logarithmic Bloch space BLαconsists of those functions f which are analytic in the unit disk D with.■In this paper,we characterize the closure of the analytic functions of bounded mean oscillation BMOA in the logarithmic Bloch space BLαfor allα∈R.展开更多
The discrete logarithm problem(DLP)is to find a solution n such that g^n=h in a finite cyclic group G=,where h∈G.The DLP is the security foundation of many cryptosystems,such as RSA.We propose a method to improve Pol...The discrete logarithm problem(DLP)is to find a solution n such that g^n=h in a finite cyclic group G=,where h∈G.The DLP is the security foundation of many cryptosystems,such as RSA.We propose a method to improve Pollard’s kangaroo algorithm,which is the classic algorithm for solving the DLP.In the proposed algorithm,the large integer multiplications are reduced by controlling whether to perform large integer multiplication.To control the process,the tools of expanding factor and jumping distance are introduced.The expanding factor is an indicator used to measure the probability of collision.Large integer multiplication is performed if the value of the expanding factor is greater than the given bound.The improved algorithm requires an average of(1.633+o(1))q(1/2)times of the large integer multiplications.In experiments,the average large integer multiplication times is approximately(1.5+o(1))q(1/2).展开更多
In this article, we show that the generalized logarithmic mean is strictly Schurconvex function for p 〉 2 and strictly Schur-concave function for p 〈 2 on R_+^2. And then we give a refinement of an inequality for t...In this article, we show that the generalized logarithmic mean is strictly Schurconvex function for p 〉 2 and strictly Schur-concave function for p 〈 2 on R_+^2. And then we give a refinement of an inequality for the generalized logarithmic mean inequality using a simple majoricotion relation of the vector.展开更多
Let u(t,x)be the solution to the one-dimensional nonlinear stochastic heat equation driven by space-time white noise with u(0,x)=1 for all x∈R.In this paper,we prove the law of the iterated logarithm(LIL for short)an...Let u(t,x)be the solution to the one-dimensional nonlinear stochastic heat equation driven by space-time white noise with u(0,x)=1 for all x∈R.In this paper,we prove the law of the iterated logarithm(LIL for short)and the functional LIL for a linear additive functional of the form∫[0,R]u(t,x)dx and the nonlinear additive functionals of the form∫[0,R]g(u(t,x))dx,where g:R→R is nonrandom and Lipschitz continuous,as R→∞for fixed t>0,using the localization argument.展开更多
Kernel adaptive filters(KAFs)have sparked substantial attraction for online non-linear learning applications.It is noted that the effectiveness of KAFs is highly reliant on a rational learning criterion.Concerning thi...Kernel adaptive filters(KAFs)have sparked substantial attraction for online non-linear learning applications.It is noted that the effectiveness of KAFs is highly reliant on a rational learning criterion.Concerning this,the logarithmic hyperbolic cosine(lncosh)criterion with better robustness and convergence has drawn attention in recent studies.However,existing lncosh loss-based KAFs use the stochastic gradient descent(SGD)for optimization,which lack a trade-off between the convergence speed and accuracy.But recursion-based KAFs can provide more effective filtering performance.Therefore,a Nyström method-based robust sparse kernel recursive least lncosh loss algorithm is derived in this article.Experiments via measures and synthetic data against the non-Gaussian noise confirm the superiority with regard to the robustness,accuracy performance,and computational cost.展开更多
Hu Shuhe gets a sufficient condition on the law of the iterated logarithm for the sums of φ-mixing sequences with duple suffixes. This paper greatly improves his condition.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LY23A010003).
文摘Letμbe a positive Borel measure on the interval[0,1).The Hankel matrix■with entriesμn,k=μn+k,whereμn=■[0,1)tndμ(t),induces,formally,the operator■where■is an analytic function in.We characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the Bergman space■,where 0≤α<∞,0<p<∞.We also characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the classical Bloch space■.
基金Supported by the NSFC(11771087,12171091 and 11831005)。
文摘In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.
基金Supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2021MA003).
文摘This paper deals with an initial-boundary value problem of a fourth-order parabolic equation involving Logarithmic type p-Laplacian,which could be proposed as a model for the epitaxial growth of thin films.By using the variational method and the logarithmic type Sobolev inequality,we give some threshold results for blow-up solutions and global solutions,which could be classified by the initial energy.The asymptotic estimates about blow-up time and decay estimate of weak solutions are obtained.
文摘稻谷籽粒内部水分扩散的快慢决定了干燥速率。本文基于Logarithmic方程,建立稻谷水分传递动力学模型,并分析热风温度(40、50、60、70℃)和风速(0.3、0.4、0.5 m/s)对稻谷(湿基水分含量23.4%)有效水分扩散系数和扩散活化能的影响。结果表明:随着干燥温度和风速的上升,稻谷干燥速率提高,同时对应的有效水分扩散系数越大,分别为5.123×10-12~2.141×10-11m^2/s;扩散活化能从32.94 k J/mol增加至36.30 k J/mol;对比常用的5种谷物干燥模型发现,Logarithmic模型对稻谷薄层干燥的拟合度较好,R2>0.997,RMSE<2.810×10^(-3),同时该模型模拟得出的有效水分扩散系数与实际差值均低于3.8×10^(-13)m^2/s,扩散活化能均低于2.53 k J/mol,与实际值基本吻合。
基金Project Supported by NSFC (10131040)SRFDP (2002335090)
文摘A law of iterated logarithm for R/S statistics with the help of the strong approximations of R/S statistics by functions of a Wiener process is shown.
基金supported by the National Natural Science Foundation of China (11071069 and 11171307)Natural Science Foundation of Hunan Province(09JJ6003)Innovation Team Foundation of the Department of Education of Zhejiang Province (T200924)
文摘For p ∈ R, the generalized logarithmic mean Lp(a, b) and Seiffert's mean T(a, b) of two positive real numbers a and b are defined in (1.1) and (1.2) below respectively. In this paper, we find the greatest p and least q such that the double-inequality Lp(a, b) 〈 T(a,b) 〈 Lq(a,b) holds for all a,b 〉 0 and a ≠ b.
文摘In this article, a law of iterated logarithm for the maximum likelihood estimator in a random censoring model with incomplete information under certain regular conditions is obtained.
基金supported by the National Basic Research Program (973 Program)under Grant No.2013CB834205 the National Natural Science Foundation of China under Grant No.61272035 the Independent Innovation Foundation of Shandong University under Grant No.2012JC020
文摘In this paper, we present two explicit invalid-curve attacks on the genus 2 hyperelliptic curve over a finite field. First, we propose two explicit attack models by injecting a one-bit fault in a given divisor. Then, we discuss the construction of an invalid curve based on the faulted divisor. Our attacks are based on the fact that the Hyperelliptic Curve Scalar Multiplication (HECSM) algorithm does not utilize the curve parameters and We consider three hyperelliptic curves as the attack targets. For curve with security level 186 (in bits), our attack method can get the weakest invalid curve with security level 42 (in bits); there are 93 invalid curves with security level less than 50. We also estimate the theoretical probability of getting a weak hyperelliptic curve whose cardinality is a smooth integer. Finally, we show that the complexity of the fault attack is subexponential if the attacker can freely inject a fault in the input divisor. Cryptosystems based on the genus 2 hyperelliptic curves cannot work against our attack algorithm in practice.
基金supported by Natural Science Foundation of Guizhou Minzu University(20185773-YB03)supported by Fundamental Research Funds of China West Normal University(18B015)+2 种基金Innovative Research Team of China West Normal University(CXTD2018-8)supported by National Natural Science Foundation of China(11861021)supported by National Natural Science Foundation of China(11661021)。
文摘We consider the logarithmic elliptic equation with singular nonlinearity {Δu+ulogu^(2)+λ/u^(γ)=0,in Ω,u>0,in Ω,u=0,on δΩ,where Ω⊂R^(N)(N≥3)is a bounded domain with a smooth boundary,0<γ<1 andλis a positive constant.By using a variational method and the critical point theory for a nonsmooth functional,we obtain the existence of two positive solutions.This result generalizes and improves upon recent results in the literature.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No 10674176)
文摘This paper studies numerically the dark incoherent spatial solitons propagating in logarithmically saturable nonlinear media by using a coherent density approach and a split-step Fourier approach for the first time. Under odd and even initial conditions, a soliton triplet and a doublet are obtained respectively for given parameters. Simultaneously, coherence properties associated with the soliton triplet and doublet are discussed. In addition, if the values of the parameters are properly chosen, five and four splittings from the input dark incoherent spatial solitons can also form. Lastly, the grayness of the soliton triplet and that of the doublet are studied, in detail.
基金Supported by the Ministry of Educational,China(2003-58)the Research Fund for thr Doctoral Programs of the Ministry of Education,China(2002-173)
文摘The logarithmic model is often used to describe the relationships between factors.It often gives good statistical characteristics.Yet,in the process of modeling of soil and water conservation,we find out that this“good”model cannot guarantee good result.In this paper we make an inquiry into the intrinsic reasons.It is shown that the logarithmic model has the property of enlarging or reducing model errors,and the disadvantages of the logarithmic model are analyzed.
基金supported by the National Key R&D Program of China(Grant Nos.2017YFA0303302 and 2018YFA0305602)the National Natural Science Foundation of China(Grant No.11921005)Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)。
文摘We investigate a time-independent many-boson system,whose ground states are quasi-degenerate and become infinitely degenerate in the thermodynamic limit.Out of these quasi-degenerate ground states we construct a quantum state that evolves in time with a period that is logarithmically proportional to the number of particles,that is,T~log N.This boson system in such a state is a quantum time crystal as it approaches the ground state in the thermodynamic limit.The logarithmic dependence of its period on the total particle number N makes it observable experimentally even for systems with very large number of particles.Possible experimental proposals are discussed.
基金supported in part by the National Natural Science Foundation of China.
文摘The behavior of logarithmic moments of particle distributions in different rapidity windows is discussed for pp and PA collisions at high energies.The special role of those events,having no-particle in the rapidity window,is stressed.
基金supported by the National Natural Science Foundation of China(11671357,11801508)。
文摘For anyα∈R,the logarithmic Bloch space BLαconsists of those functions f which are analytic in the unit disk D with.■In this paper,we characterize the closure of the analytic functions of bounded mean oscillation BMOA in the logarithmic Bloch space BLαfor allα∈R.
基金partially supported by National Key R&D Program of China(no.2017YFB0802500)The 13th Five-Year National Cryptographic Development Foundation(no.MMJJ20180208)+1 种基金Beijing Science and Technology Commission(no.2181100002718001)NSF(no.61272039).
文摘The discrete logarithm problem(DLP)is to find a solution n such that g^n=h in a finite cyclic group G=,where h∈G.The DLP is the security foundation of many cryptosystems,such as RSA.We propose a method to improve Pollard’s kangaroo algorithm,which is the classic algorithm for solving the DLP.In the proposed algorithm,the large integer multiplications are reduced by controlling whether to perform large integer multiplication.To control the process,the tools of expanding factor and jumping distance are introduced.The expanding factor is an indicator used to measure the probability of collision.Large integer multiplication is performed if the value of the expanding factor is greater than the given bound.The improved algorithm requires an average of(1.633+o(1))q(1/2)times of the large integer multiplications.In experiments,the average large integer multiplication times is approximately(1.5+o(1))q(1/2).
基金Foundation item: Supported by the Scientific Research Common Program of Beijing Municipal Commission of Education of China(Km200611417009) Suppoted by the Natural Science Foundation of Fujian Province Education Department of China(JA05324)
文摘In this article, we show that the generalized logarithmic mean is strictly Schurconvex function for p 〉 2 and strictly Schur-concave function for p 〈 2 on R_+^2. And then we give a refinement of an inequality for the generalized logarithmic mean inequality using a simple majoricotion relation of the vector.
基金supported by the National Natural Science Foundation of China(11771178 and 12171198)the Science and Technology Development Program of Jilin Province(20210101467JC)+1 种基金the Science and Technology Program of Jilin Educational Department during the“13th Five-Year”Plan Period(JJKH20200951KJ)the Fundamental Research Funds for the Central Universities。
文摘Let u(t,x)be the solution to the one-dimensional nonlinear stochastic heat equation driven by space-time white noise with u(0,x)=1 for all x∈R.In this paper,we prove the law of the iterated logarithm(LIL for short)and the functional LIL for a linear additive functional of the form∫[0,R]u(t,x)dx and the nonlinear additive functionals of the form∫[0,R]g(u(t,x))dx,where g:R→R is nonrandom and Lipschitz continuous,as R→∞for fixed t>0,using the localization argument.
基金supported in part by the National Natural Science Foundation of China under Grants No.62027803,No.61601096,No.61971111,and No.61801089in part by the Science and Technology Program under Grants No.8091C24,No.2021JCJQJJ0949,and No.2022JCJQJJ0784in part by the Industrial Technology Development Program under Grant No.2020110C041.
文摘Kernel adaptive filters(KAFs)have sparked substantial attraction for online non-linear learning applications.It is noted that the effectiveness of KAFs is highly reliant on a rational learning criterion.Concerning this,the logarithmic hyperbolic cosine(lncosh)criterion with better robustness and convergence has drawn attention in recent studies.However,existing lncosh loss-based KAFs use the stochastic gradient descent(SGD)for optimization,which lack a trade-off between the convergence speed and accuracy.But recursion-based KAFs can provide more effective filtering performance.Therefore,a Nyström method-based robust sparse kernel recursive least lncosh loss algorithm is derived in this article.Experiments via measures and synthetic data against the non-Gaussian noise confirm the superiority with regard to the robustness,accuracy performance,and computational cost.
文摘Hu Shuhe gets a sufficient condition on the law of the iterated logarithm for the sums of φ-mixing sequences with duple suffixes. This paper greatly improves his condition.