Zebrafish are increasingly being utilized as a laboratory animal species to study various biological processes,both normal and pathological.It is crucial to comprehend the dynamics of zebrafish locomotion and put fort...Zebrafish are increasingly being utilized as a laboratory animal species to study various biological processes,both normal and pathological.It is crucial to comprehend the dynamics of zebrafish locomotion and put forth realistic models since their locomotion characteristics are employed as feedback indicators in diverse experiments.In this study,we conducted experimental research on the locomotion of zebrafish across various spatial sizes,focusing on the analysis of motion step size and motion direction.The results indicated that the motion step exhibits long-range correlations,the motion direction shows unbiased randomness,and the data characteristics are not influenced by spatial size.The dynamic mechanisms are complicated dynamical processes rather than fractional Brownian or Lévy processes motion.Based on the experimental results,we proposed a model for describing the movement of zebrafish in a circular container.Our findings shed light on the locomotion characteristics of zebrafish,and have the potential to benefit both the biological outcomes of animal tests and the welfare of the subjects.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12205006)the Excellent Youth Scientific Research Project of Anhui Province,China(Grant No.2022AH030107)。
文摘Zebrafish are increasingly being utilized as a laboratory animal species to study various biological processes,both normal and pathological.It is crucial to comprehend the dynamics of zebrafish locomotion and put forth realistic models since their locomotion characteristics are employed as feedback indicators in diverse experiments.In this study,we conducted experimental research on the locomotion of zebrafish across various spatial sizes,focusing on the analysis of motion step size and motion direction.The results indicated that the motion step exhibits long-range correlations,the motion direction shows unbiased randomness,and the data characteristics are not influenced by spatial size.The dynamic mechanisms are complicated dynamical processes rather than fractional Brownian or Lévy processes motion.Based on the experimental results,we proposed a model for describing the movement of zebrafish in a circular container.Our findings shed light on the locomotion characteristics of zebrafish,and have the potential to benefit both the biological outcomes of animal tests and the welfare of the subjects.