期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于近红外光谱和LOF的蛋清粉非定向掺杂鉴别研究
1
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 叶文杰 金永涛 王巧华 马美湖 《光谱学与光谱分析》 北大核心 2025年第6期1768-1775,共8页
蛋清粉的掺杂鉴别技术对保障蛋粉质量安全具有重要意义,然而目前传统的生物分子检测方法存在操作复杂且耗时长的问题,且针对蛋清粉的掺杂鉴别模型仍主要为定向鉴别模型,其检测范围有限,无法有效覆盖所有可能的掺杂物质,亟需开发一种快... 蛋清粉的掺杂鉴别技术对保障蛋粉质量安全具有重要意义,然而目前传统的生物分子检测方法存在操作复杂且耗时长的问题,且针对蛋清粉的掺杂鉴别模型仍主要为定向鉴别模型,其检测范围有限,无法有效覆盖所有可能的掺杂物质,亟需开发一种快速、准确、泛用的蛋清粉掺杂鉴别方法。该研究引入近红外光谱检测技术,构建了LOF非定向鉴别模型。该模型是一种无监督单分类模型,且在原模型基础上加入MSC预处理和CARS波长筛选处理,提高模型提取光谱特征的能力,减少噪声干扰,降低模型计算量。试验结果表明,LOF非定向鉴别模型针对掺杂蛋清粉的检测率可达到93.6%,其准确率、精确率、召回率、F1分数分别达到了93.6%、95.5%、93.6%、94.5%,针对掺杂浓度超过15%的蛋清粉,可达到100%的检测率,两种测试集的总准确率(AAR)均为93.6%,平均检测时间(AATS)可达到0.0011 s;与其他非定向算法相比具有更高的精度,且相比于传统的定向模型泛用性更强,更适合应用于市面上掺杂种类繁杂的蛋清粉掺杂鉴别。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的科学基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 局部离群因子检测算法 非定向检测
在线阅读 下载PDF
基于时间序列压缩分割的监测数据异常识别算法研究 被引量:9
2
作者 蒲黔辉 张子怡 +2 位作者 肖图刚 洪彧 文旭光 《桥梁建设》 EI CSCD 北大核心 2024年第3期15-23,共9页
为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时... 为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时间序列通过基于序列重要点(Series Importance Point, SIP)的时间序列线性分段(Piecewise Linear Represent, PLR)算法(PLR_SIP)得到数条时间子序列;然后采用欧氏距离进行时间子序列的相似性分析,并基于改进的局部离群因子(Local Outlier Factor, LOF)算法计算每条时间子序列的局部离群因子;最后将其与设定的阈值相比较,从而识别出监测数据的异常。为验证该算法的准确性与工程实用性,对某公路大跨度斜拉桥健康监测数据进行异常识别。结果表明:采用PLR_SIP算法对原始时间序列压缩分割得到的时间子序列能够准确地反映原序列的变化趋势和范围;改进的LOF算法突破了传统LOF算法仅能识别离群值这类无持续时间异常的局限性,能够排除噪声的干扰,实现对离群、缺失和漂移3种异常的识别。该算法无需定义训练集,直接以原始监测数据作为算法的输入,同时能够自适应调整阈值参数,具有良好的可扩展性、实时性、准确性和高效性,适用于处理实时、大量的桥梁健康监测数据。 展开更多
关键词 斜拉桥 健康监测数据 异常识别 PLR_SIP算法 LOF算法 时间序列 欧氏距离 局部离群因子
在线阅读 下载PDF
基于集成学习的脱硫剂加入量预测方法 被引量:2
3
作者 方一飞 但斌斌 +3 位作者 吴经纬 容芷君 都李平 罗钟邱 《武汉科技大学学报》 CAS 北大核心 2024年第5期361-367,共7页
为解决铁水预脱硫过程中脱硫剂加入量控制问题,提出一种基于集成学习的脱硫剂加入量预测方法。首先,对原始数据进行预处理,将空值、重复值、0值以及不符合工艺规范的数据行删除,并使用LOF算法结合专家经验剔除异常值;其次,基于GBDT算法... 为解决铁水预脱硫过程中脱硫剂加入量控制问题,提出一种基于集成学习的脱硫剂加入量预测方法。首先,对原始数据进行预处理,将空值、重复值、0值以及不符合工艺规范的数据行删除,并使用LOF算法结合专家经验剔除异常值;其次,基于GBDT算法计算每个输入特征的重要性占比,进行特征筛选;最后,采用Optuna超参数自动寻优框架对预测模型调优,寻找最佳超参数组合,预测脱硫剂加入量。利用某钢厂铁水预处理过程中的实际生产数据,分别采用XGBoost、RF、GBDT以及LightGBM等方法构建预测模型并进行对比试验。其中XGBoost模型的拟合精度(R^(2))、均方根误差(RMSE)、平均绝对误差(MAE)以及平均绝对百分比误差(MAPE)分别为0.8962、198.245、119.726以及7.897%,相较于其它模型均是最优。 展开更多
关键词 脱硫剂加入量 铁水预脱硫 局部异常因子 Optuna算法 极限梯度提升树
在线阅读 下载PDF
基于IKNN和LOF的变压器回复电压数据清洗方法研究 被引量:3
4
作者 陈啸轩 邹阳 +3 位作者 翁祖辰 林锦茄 林昕亮 张云霄 《电子测量与仪器学报》 CSCD 北大核心 2024年第2期92-100,共9页
基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近... 基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近邻(IKNN)的回复电压数据清洗方法。首先,选取回复电压极化谱的回复电压极大值Urmax、初始斜率Sr与主时间常数tcdom作为老化特征参量,并基于LOF算法对非标准极化谱中的异常特征量数据进行识别与筛除。其次,利用模糊C均值(FCM)聚类算法减小噪声点对KNN算法的干扰,并通过加权欧氏距离标度突出各特征量间的关联性,进而构建出基于IKNN的数据填补模型架构以实现特征缺失数据的填补。最后,代入多组实测数据验证所提数据清洗方法的实效性。结果表明,数据清洗后的状态评估准确率相较于原有数据上升了50%左右,有效提高了变压器回复电压数据质量,为准确感知变压器运行状况奠定坚实的基础。 展开更多
关键词 油纸绝缘 特征数据清洗 局部离群因子算法 回复电压极化谱 改进K最近邻算法
在线阅读 下载PDF
基于LOF算法的核辐射自动监测系统设计与实现 被引量:3
5
作者 时劲松 冯江平 +5 位作者 王珍华 张金帆 闫翠翠 刘焱 杨颖琪 彭丽君 《核电子学与探测技术》 CAS 北大核心 2024年第2期303-310,共8页
为适应对高精度、全覆盖的核辐射监测要求,本文基于局部离群因子算法(Local Outlier Factor,LOF)设计了一套完善的核辐射自动监测系统。首先,结合具体情况,进行核辐射自动监测站布点,实时获取核辐射监测数据并通过无线通信网络传至服务... 为适应对高精度、全覆盖的核辐射监测要求,本文基于局部离群因子算法(Local Outlier Factor,LOF)设计了一套完善的核辐射自动监测系统。首先,结合具体情况,进行核辐射自动监测站布点,实时获取核辐射监测数据并通过无线通信网络传至服务器,采用传输加密技术保障数据传输过程的安全性与可靠性;其次,通过引入LOF算法有效识别监测数据中存在的传感器故障或者设备缺陷导致的无效监测异常值,无效值将不列入数据统计;最后,将有效的监测实时数据传送至监测指挥中心。系统试运行测试结果表明:该系统能有效针对各种硬件故障导致的无效数据进行高可靠性的实时监测和识别,无效数据判断准确性超过95%,提高了核辐射环境自动监测的稳定性和可靠性,有效防范核辐射造成的危害,为促进生态系统的可持续发展提供参考。 展开更多
关键词 核辐射 LOF算法 大数据监测 核与辐射安全
在线阅读 下载PDF
轨式输送机轮轨噪声预测技术研究
6
作者 马红荣 牟宗磊 胡景淇 《噪声与振动控制》 CSCD 北大核心 2024年第5期186-192,共7页
针对轨式输送机运行中产生的噪声污染问题,基于通过现场试验采集的噪声数据,提出一种基于参数优化多项式曲面拟合的轨式输送机轮轨噪声建模方法。根据均值和最大值筛选出异常数组,采用局部离群因子算法检测异常数组中的异常数据并替换... 针对轨式输送机运行中产生的噪声污染问题,基于通过现场试验采集的噪声数据,提出一种基于参数优化多项式曲面拟合的轨式输送机轮轨噪声建模方法。根据均值和最大值筛选出异常数组,采用局部离群因子算法检测异常数组中的异常数据并替换。选取预处理后数据的最大值,以残差平方和最小值为目标函数,利用秃鹰搜索算法建立不同位置处轨式输送机轮轨噪声预测模型,揭示距离和速度对噪声的影响规律。分析结果表明:在轨式输送机机头、中间、机尾3个位置处模型拟合度达到0.9以上,模型预测值与实测值的误差小于0.7dB(A),模型吻合度较好;在距离和速度的影响下,机头处噪声高于机尾处噪声且变化趋势基本一致;中间处噪声低于机头与机尾处噪声且随速度与距离的增加呈二次曲线型变化。该研究成果可为轨式输送机噪声控制提供理论依据。 展开更多
关键词 声学 轨式输送机 噪声预测 多项式曲面拟合 局部离群因子算法 秃鹰搜索算法
在线阅读 下载PDF
基于LSNPE算法的化工过程故障检测 被引量:24
7
作者 宋冰 马玉鑫 +1 位作者 方永锋 侍洪波 《化工学报》 EI CAS CSCD 北大核心 2014年第2期620-627,共8页
复杂化工过程通常具有多个操作模态,而且采集的数据不服从单一的高斯或非高斯分布。针对化工过程的多模态和复杂数据分布问题,将局部标准化(local standardized,LS)策略应用于邻域保持嵌入(neighborhood preserving embedding,NPE)算法... 复杂化工过程通常具有多个操作模态,而且采集的数据不服从单一的高斯或非高斯分布。针对化工过程的多模态和复杂数据分布问题,将局部标准化(local standardized,LS)策略应用于邻域保持嵌入(neighborhood preserving embedding,NPE)算法,提出了一种新的基于局部标准化邻域保持嵌入(local standardized neighborhood preserving embedding,LSNPE)算法的故障检测方法。首先,使用LSNPE算法提取高维数据的低维子流形,进行维数约减,同时保持邻域结构不变。其次,通过特征空间中样本的局部离群因子(local outlier factor,LOF)构造监控统计量并确定其控制限。相较于监控多模态化工过程的多模型策略,提出的LSNPE方法不需要过程先验知识的支持,只需建立一个全局的监控模型。最后,通过数值仿真及Tennessee Eastman(TE)过程仿真研究验证了本文提出方法的有效性。 展开更多
关键词 局部标准化 邻域保持嵌入算法 局部离群因子 多模态过程系统 监控模型
在线阅读 下载PDF
利用局部离群因子算法探测核心技术发展趋势——以中国风能专利数据为例 被引量:13
8
作者 李佳佳 马铁驹 《情报杂志》 CSSCI 北大核心 2017年第3期119-124,195,共7页
[目的/意义]为验证局部离群因子算法在探测核心技术及核心技术发展趋势的有效性,丰富专利分析领域的研究。[方法/过程]以中外专利数据库服务平台CNIPR作为数据源,分别从局部离群因子算法和社会网络分析方法两个视角对中国风能领域的专... [目的/意义]为验证局部离群因子算法在探测核心技术及核心技术发展趋势的有效性,丰富专利分析领域的研究。[方法/过程]以中外专利数据库服务平台CNIPR作为数据源,分别从局部离群因子算法和社会网络分析方法两个视角对中国风能领域的专利数据进行对比分析,识别中国风能领域的核心技术以及核心技术的发展趋势。[结果/结论]结果显示,局部离群因子算法(LOF)和社会网络分析方法得出的结论基本一致:即中国在风力发电机技术方面一直保持优势,未来的发展潜力集中在风能照明装置及系统,验证了局部离群因子算法在探测核心技术及核心技术发展趋势方面的有效性。 展开更多
关键词 局部离群因子算法 专利分析 共现网络 技术预测 中国风能
在线阅读 下载PDF
基于网格划分加权的分布式离群点检测算法 被引量:10
9
作者 梅林 张凤荔 +1 位作者 王瑞锦 高强 《电子科技大学学报》 EI CAS CSCD 北大核心 2020年第6期860-866,共7页
分布式计算被广泛应用于离群点检测问题,但分布式环境中节点计算性能的差异带来了数据计算性能的下降问题。针对面向大尺度高维数据离群点分布式计算的负载均衡问题,该文提出了一种加权分布式离群点检测方法。首先根据数据节点的计算性... 分布式计算被广泛应用于离群点检测问题,但分布式环境中节点计算性能的差异带来了数据计算性能的下降问题。针对面向大尺度高维数据离群点分布式计算的负载均衡问题,该文提出了一种加权分布式离群点检测方法。首先根据数据节点的计算性能确定数据节点的权值,然后将数据空间划分为若干个网格,最后设计了一种基于网格划分的加权分配算法WGBA,将这些网格分配到数据节点中,实现并行计算。实验验证了该方法的有效性。 展开更多
关键词 基于密度的离群点检测 分布式算法 网格划分 局部异常值因子
在线阅读 下载PDF
一种基于聚类和快速计算的异常数据挖掘算法 被引量:12
10
作者 孟静 吴锡生 《计算机工程》 CAS CSCD 2013年第8期60-63,68,共5页
传统局部离群因子(LOF)算法在动态增量数据库环境下,进行二次异常数据挖掘需重新计算所有数据对象局部偏离因子,存在效率较低的问题。为此,提出一种基于聚类和快速计算的异常数据挖掘算法。对传统DBSCAN算法进行改进,并且在该改进算法... 传统局部离群因子(LOF)算法在动态增量数据库环境下,进行二次异常数据挖掘需重新计算所有数据对象局部偏离因子,存在效率较低的问题。为此,提出一种基于聚类和快速计算的异常数据挖掘算法。对传统DBSCAN算法进行改进,并且在该改进算法聚类的基础上,仅对部分数据对象计算局部偏离因子。实验结果表明,该算法在动态增量数据库环境下,与LOF与lncLOF算法相比,不仅计算时间效率高,而且能提高挖掘异常数据的精度。 展开更多
关键词 动态增量数据库 局部离群因子算法 lncLOF算法 DBSCAN算法 聚类
在线阅读 下载PDF
基于记忆效应的局部异常检测算法 被引量:8
11
作者 李健 阎保平 李俊 《计算机工程》 CAS CSCD 北大核心 2008年第12期4-6,共3页
基于密度的局部异常检测算法(LOF算法)的时间复杂度较高,限制了其在高维数据集以及大规模数据集中的使用。该文通过分析LOF算法,引入记忆效应概念,提出具有记忆效应的局部异常检测算法——MELOF算法。实验测试表明,该算法的计算结果与LO... 基于密度的局部异常检测算法(LOF算法)的时间复杂度较高,限制了其在高维数据集以及大规模数据集中的使用。该文通过分析LOF算法,引入记忆效应概念,提出具有记忆效应的局部异常检测算法——MELOF算法。实验测试表明,该算法的计算结果与LOF算法完全相同,而且能够大大缩短运行时间。 展开更多
关键词 数据挖掘 异常检测 局部异常因子 记忆效应 MELOF算法
在线阅读 下载PDF
IncLOF:动态环境下局部异常的增量挖掘算法 被引量:34
12
作者 杨风召 朱扬勇 施伯乐 《计算机研究与发展》 EI CSCD 北大核心 2004年第3期477-484,共8页
异常检测是数据挖掘领域研究的最基本的问题之一 ,它在欺诈甄别、贷款审批、气象预报、客户分类等方面有广泛的应用 以前的异常检测算法只适应于静态环境 ,在数据更新时需要进行重新计算 在基于密度的局部异常检测算法LOF的基础上 ,提... 异常检测是数据挖掘领域研究的最基本的问题之一 ,它在欺诈甄别、贷款审批、气象预报、客户分类等方面有广泛的应用 以前的异常检测算法只适应于静态环境 ,在数据更新时需要进行重新计算 在基于密度的局部异常检测算法LOF的基础上 ,提出一种在动态环境下局部异常挖掘的增量算法IncLOF ,当数据库中的数据更新时 ,只对受到影响的点进行重新计算 ,这样可以大大提高异常的挖掘速度 实验表明 ,在动态环境下IncLOF的运行时间远远小于LOF的运行时间 ,并且用户定义的邻域中的最小对象个数与记录数之比越小 。 展开更多
关键词 数据挖掘 异常检测 局部异常因子 局部可达密度 增量挖掘算法
在线阅读 下载PDF
一种不等长的多模态间歇过程故障检测方法 被引量:13
13
作者 郭金玉 袁堂明 李元 《化工学报》 EI CAS CSCD 北大核心 2016年第7期2916-2924,共9页
提出一种不等长的多模态间歇过程故障检测方法。首先,运用局部加权算法对不等长批次数据进行预处理。在训练样本中确定不等长数据的最大可保留长度,利用k近邻信息,通过加权重构出不等长批次缺失的数据点。其次,对等长的训练集构造局部... 提出一种不等长的多模态间歇过程故障检测方法。首先,运用局部加权算法对不等长批次数据进行预处理。在训练样本中确定不等长数据的最大可保留长度,利用k近邻信息,通过加权重构出不等长批次缺失的数据点。其次,对等长的训练集构造局部近邻标准化矩阵,运用K-means算法进行模态聚类,使用局部离群因子方法确定第一控制限,并剔除离群样本。最后,对各个模态建立MPCA模型并确定第二控制限。根据各个模态控制限的匹配系数计算统一的统计量和控制限,在统一的控制限下进行多模态故障检测。将提出方法应用于半导体工业过程,仿真结果表明,与传统的故障检测算法相比,本文算法提高了故障检测率,验证了该方法的有效性。 展开更多
关键词 多模态过程 故障检测 不等长数据 主元分析 算法 模型 局部离群因子 局部近邻标准化矩阵
在线阅读 下载PDF
MELOF算法的理论分析与拓展 被引量:1
14
作者 李健 阎保平 李俊 《计算机工程》 CAS CSCD 北大核心 2009年第19期94-96,共3页
介绍LOF算法、记忆效应以及MELOF算法,对记忆效应进行理论证明,验证MELOF算法的正确性,同时分析该算法的不足和记忆效应的一些特性。针对MELOF算法中的不足进行改进,介绍未来的研究方向,即参数自动选择和利用分而治之思想提高运行效率等。
关键词 数据挖掘 异常检测 局部异常因子 记忆效应 MELOF算法
在线阅读 下载PDF
基于异常点检测和改进K-means算法的台区用户相别辨识方法 被引量:26
15
作者 张然 孙晓璐 +4 位作者 何仲潇 薛莉思 陈维民 徐严军 连利波 《智慧电力》 北大核心 2020年第1期91-96,共6页
解决配电台区用户线变不匹配问题是推进配电网智能化管理的关键一步。大数据技术的快速普及为实现低成本、高效率的台区用户相别辨识提供了可能。提出了基于异常点检测和改进K-means算法的台区用户相别辨识方法。首先通过局部因子算法... 解决配电台区用户线变不匹配问题是推进配电网智能化管理的关键一步。大数据技术的快速普及为实现低成本、高效率的台区用户相别辨识提供了可能。提出了基于异常点检测和改进K-means算法的台区用户相别辨识方法。首先通过局部因子算法对聚类分析数据进行预处理,剔除不属于待分析台区的用户数据。然后,根据实际应用场景特点对K-means算法进行改进,包括确定聚类个数、初始质心,并选用相关系数作为评估样本相似度的指标。最后利用改进的K-means算法对预处理后的数据进行聚类分析,实现低压台区用户相别的精准辨识。算例分析表明,所提方法能够有效提升用户辨识准确率,且在不同的数据环境中可保持较高的稳定性。 展开更多
关键词 配电网 台区 相别辨识 局部异常因子算法 改进K-MEANS
在线阅读 下载PDF
考虑样本异常值的改进最小二乘支持向量机算法 被引量:42
16
作者 付乐天 李鹏 高莲 《仪器仪表学报》 CSCD 北大核心 2021年第6期179-190,共12页
针对最小二乘支持向量机对异常值敏感、缺乏鲁棒性的情况,提出一种考虑样本异常值的改进最小二乘支持向量机算法。该算法首先通过采用局部异常因子检测算法为每个数据样本计算一个LOF因子,根据其因子值能够有效地将样本分成正常样本和... 针对最小二乘支持向量机对异常值敏感、缺乏鲁棒性的情况,提出一种考虑样本异常值的改进最小二乘支持向量机算法。该算法首先通过采用局部异常因子检测算法为每个数据样本计算一个LOF因子,根据其因子值能够有效地将样本分成正常样本和异常样本,然后针对不同样本进行单独设置样本权重。其有效地保证了在降低异常样本权重的同时而不使正常样本权重受到影响,使最小二乘支持向量机在达到目标函数最优化的同时能够保证正常数据信息不丢失,以提高模型的鲁棒性。最后,通过引入"信息熵"和"平均粒距"来改进粒子群算法,将其应用于模型的参数优化。经过实验仿真表明,该算法能够有效地提高模型的鲁棒性,随着异常样本的增多,其模型精度提高大约67%。 展开更多
关键词 改进最小二乘支持向量机 局部异常因子检测算法 改进粒子群优化算法
在线阅读 下载PDF
基于加权改进模糊C均值聚类的欠定混合矩阵估计 被引量:5
17
作者 孙建军 徐岩 《计算机应用》 CSCD 北大核心 2020年第6期1769-1773,共5页
语音欠定混合矩阵估计问题中,针对模糊C均值聚类(FCM)算法对初始聚类中心敏感、易受噪声点干扰、鲁棒性差的缺陷,提出一种基于加权的进化规划与FCM相结合的改进算法(WE-FCM)。首先,利用进化规划(EP)算法强大的搜索能力优化FCM得到基于... 语音欠定混合矩阵估计问题中,针对模糊C均值聚类(FCM)算法对初始聚类中心敏感、易受噪声点干扰、鲁棒性差的缺陷,提出一种基于加权的进化规划与FCM相结合的改进算法(WE-FCM)。首先,利用进化规划(EP)算法强大的搜索能力优化FCM得到基于进化规划的FCM算法(EP-FCM),以获得较佳的初始聚类中心;然后,利用局部离群点检测(LOF)算法对EP-FCM加权以降低噪声点的影响。通过仿真实验得出,所提算法在源信号数为3路和4路时归一化均方误差值与偏离角度值均远小于经典的K均值聚类(K-means)算法、K-Hough、基于遗传算法的FCM算法(GAFCM)和基于密度峰值的FCM算法(FDP-FCM)。实验结果表明,所提算法明显提高了FCM算法的鲁棒性和混合矩阵的估计精度。 展开更多
关键词 模糊C均值聚类算法 进化规划算法 局部离群点检测算法 加权 混合矩阵估计
在线阅读 下载PDF
动态检测数据驱动的高速铁路有砟轨道几何不平顺超限大值预警方法 被引量:5
18
作者 曹雨欣 徐鹏 +2 位作者 杨雅琴 刘丙强 李晔 《铁道建筑》 北大核心 2023年第3期23-29,共7页
为了对高速铁路有砟轨道几何不平顺幅值超限进行准确预警,结合局部异常因子算法,提出了一种动态检测数据驱动的轨道几何不平顺维修作业识别方法。首先,基于支持向量机(Support Vector Machine,SVM)算法对轨道几何不平顺超限劣化过程进... 为了对高速铁路有砟轨道几何不平顺幅值超限进行准确预警,结合局部异常因子算法,提出了一种动态检测数据驱动的轨道几何不平顺维修作业识别方法。首先,基于支持向量机(Support Vector Machine,SVM)算法对轨道几何不平顺超限劣化过程进行分析,将影响列车运行的持续劣化超限作为研究对象;随后,使用局部异常因子(Local Outlier Factor,LOF)算法对轨道几何不平顺维修作业进行识别,依据识别结果划分超限劣化过程;最后,对两次维修作业之间的检测数据进行分析,验证轨道几何不平顺幅值的劣化为线性过程,并对几何不平顺幅值进行预测。利用该方法对某线路进行劣化分析,并与近6年的动态检测数据对比。结果表明:该方法识别维修作业准确度达91%;基于鲁棒回归的劣化模型能够准确预测轨道几何不平顺超限大值。该方法不需历史维修作业数据,可自动划分劣化过程,通过几何不平顺幅值预测模型对超限发展进行预测,及时预警几何不平顺超限大值。 展开更多
关键词 高速铁路 有砟轨道 几何不平顺 统计分析 局部异常因子算法 持续劣化超限 大值预警
在线阅读 下载PDF
风电齿轮箱磨损状态静电在线监测方法研究 被引量:2
19
作者 刘舒沁 刘若晨 +1 位作者 孙见忠 张进武 《工程设计学报》 CSCD 北大核心 2021年第2期163-169,共7页
风电齿轮箱的结构复杂且运行环境恶劣,是风电机组中故障率最高的部件,其性能直接影响风电机组的稳定性和安全性,严重时可能会造成财产损失甚至人员伤亡。为此,基于静电监测原理,采用多个静电传感器对风电齿轮箱摩擦磨损产生的二次效应... 风电齿轮箱的结构复杂且运行环境恶劣,是风电机组中故障率最高的部件,其性能直接影响风电机组的稳定性和安全性,严重时可能会造成财产损失甚至人员伤亡。为此,基于静电监测原理,采用多个静电传感器对风电齿轮箱摩擦磨损产生的二次效应同时进行监测;基于提取到的时域特征参数和复杂度度量参数,运用移动窗局部离群因子(moving window local outlier factor,MWLOF)算法分别对负荷试验和破坏试验中风电齿轮箱磨损状态的静电监测信号的变化趋势进行分析。结果表明:在负荷试验中,静电监测方法可在部分故障发生前提前监测到风电齿轮箱早期的性能退化;在破坏试验中,静电监测方法比振动监测方法提前200~1000个样本点监测到风电齿轮箱的故障。研究表明,静电监测方法作为一种新型的状态监测技术,能够有效提高对风电齿轮箱磨损状态的监测能力,可对其早期故障的产生作出较准确的预警,这可为大型设备关键部件的状态监测提供参考。 展开更多
关键词 风电齿轮箱 摩擦磨损 静电监测 移动窗局部离群因子算法
在线阅读 下载PDF
网络故障诊断研究中一种优化的否定选择算法 被引量:4
20
作者 白鹏翔 张清华 段富 《计算机应用研究》 CSCD 北大核心 2015年第10期3131-3133,3137,共4页
针对传统的否定选择算法(NSA)在网络故障诊断应用中所生成的检测器效率不高以及检测器之间重叠面积较大的问题,提出了一种基于差分进化的改进否定选择算法(DE-NSA)。该算法先采用否定选择算法随机地产生检测器,然后通过差分进化算法对... 针对传统的否定选择算法(NSA)在网络故障诊断应用中所生成的检测器效率不高以及检测器之间重叠面积较大的问题,提出了一种基于差分进化的改进否定选择算法(DE-NSA)。该算法先采用否定选择算法随机地产生检测器,然后通过差分进化算法对所生成的检测器进行优化分布;之后利用局部离群因子(LOF)作为适应度函数来优化检测器之间的距离,避免检测器之间过大的重叠区域。通过对网络故障数据实验仿真,以检测率、误报率、测试时间等评比标准与标准的否定选择算法相比,该方法具有一定的可行性和高效性。 展开更多
关键词 否定选择算法 检测器 差分进化 局部离群因子 网络故障诊断
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部