多数基于卷积神经网络的语义分割算法伴随庞大的参数量和计算复杂度,限制了其在实时处理场景中的应用。为解决该问题,提出了一种基于全局-局部上下文网络(GLCNet)的轻量级语义分割算法。该算法主要由全局-局部上下文(GLC)模块和多分辨...多数基于卷积神经网络的语义分割算法伴随庞大的参数量和计算复杂度,限制了其在实时处理场景中的应用。为解决该问题,提出了一种基于全局-局部上下文网络(GLCNet)的轻量级语义分割算法。该算法主要由全局-局部上下文(GLC)模块和多分辨率融合(MRF)模块构成。全局-局部上下文模块学习图像的全局信息和局部上下文信息,使用残差连接增强特征之间的依赖关系。在此基础上,提出了多分辨率融合模块聚合不同阶段的特征,对低分辨率特征进行上采样,与高分辨率特征融合增强高层特征的空间信息。在Cityscapes和Camvid数据集上进行测试,平均交并比(mIoU)分别达到69.89%和68.86%,在单块NVIDIA Titan V GPU上,速度分别达到87帧/s和122帧/s。实验结果表明:所提算法在分割精度、效率及参数量之间实现了较好的平衡,参数量仅有0.68×10^(6)。展开更多
针对现有的基于卷积神经网络的图像去模糊算法存在图像纹理细节恢复不清晰的问题,提出了一种基于多局部残差连接注意网络的图像去模糊算法。首先,采用一个卷积层进行浅层特征提取;其次,设计了一种新的基于残差连接和并行注意机制的多局...针对现有的基于卷积神经网络的图像去模糊算法存在图像纹理细节恢复不清晰的问题,提出了一种基于多局部残差连接注意网络的图像去模糊算法。首先,采用一个卷积层进行浅层特征提取;其次,设计了一种新的基于残差连接和并行注意机制的多局部残差连接注意模块,用于消除图像模糊并提取上下文信息;再次,采用一个基于扩张卷积的成对连接模块进行细节恢复;最后,利用一个卷积层重建清晰图像。实验结果表明:在GoPro数据集上的PSNR(peak signal to noise ratio)和SSIM(structure similarity)分别为31.83 dB、0.9275,在定性和定量两方面都表明所提方法能够有效地恢复模糊图像的纹理细节,网络性能优于对比方法。展开更多
文摘多数基于卷积神经网络的语义分割算法伴随庞大的参数量和计算复杂度,限制了其在实时处理场景中的应用。为解决该问题,提出了一种基于全局-局部上下文网络(GLCNet)的轻量级语义分割算法。该算法主要由全局-局部上下文(GLC)模块和多分辨率融合(MRF)模块构成。全局-局部上下文模块学习图像的全局信息和局部上下文信息,使用残差连接增强特征之间的依赖关系。在此基础上,提出了多分辨率融合模块聚合不同阶段的特征,对低分辨率特征进行上采样,与高分辨率特征融合增强高层特征的空间信息。在Cityscapes和Camvid数据集上进行测试,平均交并比(mIoU)分别达到69.89%和68.86%,在单块NVIDIA Titan V GPU上,速度分别达到87帧/s和122帧/s。实验结果表明:所提算法在分割精度、效率及参数量之间实现了较好的平衡,参数量仅有0.68×10^(6)。
文摘针对现有的基于卷积神经网络的图像去模糊算法存在图像纹理细节恢复不清晰的问题,提出了一种基于多局部残差连接注意网络的图像去模糊算法。首先,采用一个卷积层进行浅层特征提取;其次,设计了一种新的基于残差连接和并行注意机制的多局部残差连接注意模块,用于消除图像模糊并提取上下文信息;再次,采用一个基于扩张卷积的成对连接模块进行细节恢复;最后,利用一个卷积层重建清晰图像。实验结果表明:在GoPro数据集上的PSNR(peak signal to noise ratio)和SSIM(structure similarity)分别为31.83 dB、0.9275,在定性和定量两方面都表明所提方法能够有效地恢复模糊图像的纹理细节,网络性能优于对比方法。