Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the probl...Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.展开更多
The purpose of this study is to investigate the role of bolt profile configuration in load transfer capacity between the bolt and grout.Therefore,five types of rock bolts are used with different profiles.The rock bolt...The purpose of this study is to investigate the role of bolt profile configuration in load transfer capacity between the bolt and grout.Therefore,five types of rock bolts are used with different profiles.The rock bolts are modeled by ANSYS software.Models show that profile rock bolt T_3 and T_ with load capacity 180 and 195 kN in the jointed rocks,are the optimum profiles.Finally,the performances of the selected profiles are examined in Tabas Coal Mine by FLAC software.There is good subscription between the results of numerical modeling and instrumentation reading such as tells tale,sonic extensometer and strain gauge rock bolt.According to the finding of this study,the proposed pattern of rock bolts,on 7 + 6 patterns per meter with 2 flexi bolt(4 m) for support gate road.展开更多
In response to the development of deep-sea oil and gas resources,which require a high degree of cooperation by crude oil transportation equipment,a new type of ship known as the cargo transfer vessel(CTV)has been deve...In response to the development of deep-sea oil and gas resources,which require a high degree of cooperation by crude oil transportation equipment,a new type of ship known as the cargo transfer vessel(CTV)has been developed.To provide a theoretical reference for the design and equipment of the CTV’s dynamic positioning system,in this paper,we take the new deepwater CTVas the study object and theoretically and numerically analyze its operation,wind load,current load,wave load,and navigational resistance in a range of Brazilian sea conditions with respect to its positioning and towing modes.We confirm that our proposed method can successfully calculate the total environmental load of the CTVand that the CTV is able to operate normally under the designed sea conditions.展开更多
A digital transfer function measurement system has been embedded in the low-level radio frequency (LLRF) system of the storage ring of the Shanghai Synchrotron Radiation Facility. The measurement results indicate that...A digital transfer function measurement system has been embedded in the low-level radio frequency (LLRF) system of the storage ring of the Shanghai Synchrotron Radiation Facility. The measurement results indicate that the decreased control accuracy at high current is primarily owing to ripples from the high-voltage power supply, the transient beam loading effect, and the digital aliasing effect. The current LLRF algorithm is not able to suppress these disturbances.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62173137,52172403,62303178).
文摘Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.
文摘The purpose of this study is to investigate the role of bolt profile configuration in load transfer capacity between the bolt and grout.Therefore,five types of rock bolts are used with different profiles.The rock bolts are modeled by ANSYS software.Models show that profile rock bolt T_3 and T_ with load capacity 180 and 195 kN in the jointed rocks,are the optimum profiles.Finally,the performances of the selected profiles are examined in Tabas Coal Mine by FLAC software.There is good subscription between the results of numerical modeling and instrumentation reading such as tells tale,sonic extensometer and strain gauge rock bolt.According to the finding of this study,the proposed pattern of rock bolts,on 7 + 6 patterns per meter with 2 flexi bolt(4 m) for support gate road.
基金supported by the National Natural Science Foundation of China(Grant No.51509046)Foundation of Ministry of Industry and Information Technology High-tech Ship Scientific Research(Grant No.2016-26)
文摘In response to the development of deep-sea oil and gas resources,which require a high degree of cooperation by crude oil transportation equipment,a new type of ship known as the cargo transfer vessel(CTV)has been developed.To provide a theoretical reference for the design and equipment of the CTV’s dynamic positioning system,in this paper,we take the new deepwater CTVas the study object and theoretically and numerically analyze its operation,wind load,current load,wave load,and navigational resistance in a range of Brazilian sea conditions with respect to its positioning and towing modes.We confirm that our proposed method can successfully calculate the total environmental load of the CTVand that the CTV is able to operate normally under the designed sea conditions.
文摘A digital transfer function measurement system has been embedded in the low-level radio frequency (LLRF) system of the storage ring of the Shanghai Synchrotron Radiation Facility. The measurement results indicate that the decreased control accuracy at high current is primarily owing to ripples from the high-voltage power supply, the transient beam loading effect, and the digital aliasing effect. The current LLRF algorithm is not able to suppress these disturbances.