Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical prec...Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical precipitation.Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed.This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid.When experiments were done under optimal conditions(Na2S2O8-to-Li molar ratio 0.45,0.30 mol/L H2SO4,60℃,1.5 h),leaching efficiencies of 97.53% for Li^+,1.39%for Fe^3+,and 2.58% for PO4^3−were recorded.FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0.The mother liquor was concentrated and maintained at a temperature of approximately 100℃,and then a saturated sodium carbonate solution was added to precipitate Li2CO3.The lithium recovery yield was close to 80%.展开更多
以磷酸铁锂电池为研究对象,综合考虑梯次利用比例、使用周期及电池容量等因素,设定不同梯次利用场景,采用生命周期评价方法量化退役动力电池在梯次利用及后续报废处置阶段的环境影响,并对不同梯次利用率情景下的碳减排量进行分析.结果表...以磷酸铁锂电池为研究对象,综合考虑梯次利用比例、使用周期及电池容量等因素,设定不同梯次利用场景,采用生命周期评价方法量化退役动力电池在梯次利用及后续报废处置阶段的环境影响,并对不同梯次利用率情景下的碳减排量进行分析.结果表明,与直接再生利用相比,储能、通信基站、低速电源三种梯次利用场景均表现为环境效益.其中,储能场景环境效益最大,其在气候变化、化石能源消耗、人体毒性-非致癌、陆地生态毒性指标等环境影响指标上均表现出相对优势.基于电池退役量和梯次利用去向,进一步计算出2023年全年磷酸铁锂电池梯次利用的碳减排量为1.05×10^(8) kg CO_(2)eq.当梯次利用率保持当前水平或以10%增长时,至2030年其全年碳减排量可达1.55×10^(9)kg CO_(2)eq.和5.98×10^(9)kg CO_(2)eq.,梯次利用具有良好的减污降碳环境表现.展开更多
Li3V2(PO4)3 doped with Mg2+ particles were prepared by a novel method from drying the precursor by vacuum distillation,then two steps ball-milling and two steps sintering it.The particle size,structure and morphology ...Li3V2(PO4)3 doped with Mg2+ particles were prepared by a novel method from drying the precursor by vacuum distillation,then two steps ball-milling and two steps sintering it.The particle size,structure and morphology of samples were characterized by and particle size distribution(PSD),X-ray diffraction(XRD),scanning electron microscopy(SEM).Electrochemical behaviors were characterized by galvanostatic charge/discharge and cyclic voltammetry.The results showed that the particle size of products was increased by adding small amount of Mg in Li3V2(PO4)3,but the crystal structure not changed comparing with Li3V2(PO4)3 without Mg2+.The sample with nMg:nLi=0.025 showed better performances in terms of the specific discharge capacity and cycle stability.The improved electrochemical properties of the(Li0.95Mg0.025)3V2(PO4)3 samples were attributed to the better electronic conductivity.展开更多
基金Project(Z20160605230001)supported by Hunan Province Non-ferrous Fund Project,China。
文摘Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical precipitation.Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed.This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid.When experiments were done under optimal conditions(Na2S2O8-to-Li molar ratio 0.45,0.30 mol/L H2SO4,60℃,1.5 h),leaching efficiencies of 97.53% for Li^+,1.39%for Fe^3+,and 2.58% for PO4^3−were recorded.FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0.The mother liquor was concentrated and maintained at a temperature of approximately 100℃,and then a saturated sodium carbonate solution was added to precipitate Li2CO3.The lithium recovery yield was close to 80%.
文摘以磷酸铁锂电池为研究对象,综合考虑梯次利用比例、使用周期及电池容量等因素,设定不同梯次利用场景,采用生命周期评价方法量化退役动力电池在梯次利用及后续报废处置阶段的环境影响,并对不同梯次利用率情景下的碳减排量进行分析.结果表明,与直接再生利用相比,储能、通信基站、低速电源三种梯次利用场景均表现为环境效益.其中,储能场景环境效益最大,其在气候变化、化石能源消耗、人体毒性-非致癌、陆地生态毒性指标等环境影响指标上均表现出相对优势.基于电池退役量和梯次利用去向,进一步计算出2023年全年磷酸铁锂电池梯次利用的碳减排量为1.05×10^(8) kg CO_(2)eq.当梯次利用率保持当前水平或以10%增长时,至2030年其全年碳减排量可达1.55×10^(9)kg CO_(2)eq.和5.98×10^(9)kg CO_(2)eq.,梯次利用具有良好的减污降碳环境表现.
文摘Li3V2(PO4)3 doped with Mg2+ particles were prepared by a novel method from drying the precursor by vacuum distillation,then two steps ball-milling and two steps sintering it.The particle size,structure and morphology of samples were characterized by and particle size distribution(PSD),X-ray diffraction(XRD),scanning electron microscopy(SEM).Electrochemical behaviors were characterized by galvanostatic charge/discharge and cyclic voltammetry.The results showed that the particle size of products was increased by adding small amount of Mg in Li3V2(PO4)3,but the crystal structure not changed comparing with Li3V2(PO4)3 without Mg2+.The sample with nMg:nLi=0.025 showed better performances in terms of the specific discharge capacity and cycle stability.The improved electrochemical properties of the(Li0.95Mg0.025)3V2(PO4)3 samples were attributed to the better electronic conductivity.