期刊文献+
共找到7,826篇文章
< 1 2 250 >
每页显示 20 50 100
White Light Emission Enhancement in Sm^(3+)-doped Lithium Aluminum Silicate Glasses by Ag Nanoparticles
1
作者 CHANG Yuanxing ZHANG Dandan +4 位作者 YIN Guanchao WANG Yesen WANG Mingzhong QIU Jianbei XU Yinsheng 《发光学报》 北大核心 2025年第7期1249-1261,共13页
Sm^(3+)-doped materials exhibit red and orange emissions in the visible light region,showing broad applica⁃tion prospects in both laser and display material fields.However,the inherent small emission and absorption cr... Sm^(3+)-doped materials exhibit red and orange emissions in the visible light region,showing broad applica⁃tion prospects in both laser and display material fields.However,the inherent small emission and absorption cross-sections of Sm^(3+)result in low luminous efficiency,posing challenges for achieving high-quality solid-state lighting.Here,the excellent white emission of Sm^(3+)doped lithium aluminum silicate(LAS)glass was realized by introducing the Ag aggregates through Ag ion exchange.Under 395 nm excitation,the Ag-doped samples exhibit significant fluo⁃rescence enhancement with color coordinates close to the equal energy white point E(0.33,0.33)and a color ren⁃dering index(CRI)of 81.8.The study reveals that the surface plasmon resonance(SPR)effect of Ag nanoparticles enhances the luminescence of Sm^(3+),while the energy transfer mechanism between Ag^(+)and Sm^(3+)also promotes fluores⁃cence enhancement.By adjusting the concentration of AgNO_(3) and the exchange time,a series of high-quality full-spectrum white light emissions were obtained,indicating that the Ag ion-exchanged Sm^(3+)-doped LAS glass has good application potential in the development of solid-state lighting devices.Moreover,variations in the excitation wave⁃length can effectively tune the emission color,further demonstrating the tunability and practicality of this material in optoelectronic applications. 展开更多
关键词 Ag NPs luminescent properties rare earth ions lithium aluminum silicate glass
在线阅读 下载PDF
Hetero-metallic lithiophilic sites to assist sustained diffusion-deposition of Li^(+) toward stable lithium metal anodes
2
作者 HUANG Shao-zhen HE Pan +2 位作者 YU Hua-ming LI Hui-miao CHEN Li-bao 《Journal of Central South University》 CSCD 2024年第12期4437-4448,共12页
Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite fo... Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns,significantly impeding their advancement towards widespread commercial viability.Herein,a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges.The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites,facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation.Additionally,these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling.The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability,superior rate performance and high-capacity retention.This work confirms that the synergy between a 3 D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes,offering innovative insights for the practical deployment of lithium metal batteries. 展开更多
关键词 lithium metal anodes lithiophilic sites intermetallic phase enhanced structural stability fast ion diffusion
在线阅读 下载PDF
使用CIMS离子交换膜分离Li^(+)和[Bmim]^(+)
3
作者 薛静怡 汪润慈 +2 位作者 孟响 袁中伟 郑卫芳 《膜科学与技术》 北大核心 2025年第2期48-55,共8页
吸收式热泵是一种能有效节能的制冷技术,而工质对是该技术发展的瓶颈之一。三元工质对如LiBr-[Bmim]Cl-H_(2)O具有性能优势,使用CIMS离子交换膜可以有效且环保地分离Li^(+)和[Bmim]^(+)。为了研究CIMS膜的分离机理,本文通过Ferry-Faxen... 吸收式热泵是一种能有效节能的制冷技术,而工质对是该技术发展的瓶颈之一。三元工质对如LiBr-[Bmim]Cl-H_(2)O具有性能优势,使用CIMS离子交换膜可以有效且环保地分离Li^(+)和[Bmim]^(+)。为了研究CIMS膜的分离机理,本文通过Ferry-Faxen方程测量了CIMS膜的膜孔径,通过电渗析实验测量了两种离子在CIMS膜中的分配系数和扩散系数,以及CIMS膜在不同电流密度下的分离系数,并利用能斯特-普朗克方程讨论了这两种离子的电渗析分离过程。实验结果表明,[Bmim]^(+)水合离子的空间尺寸接近或大于膜孔径,[Bmim]^(+)离子与CIMS膜表面的磺酸基团有较强的相互作用。上述两个原因使得CIMS膜可以有效分离这两种离子。 展开更多
关键词 Li^(+)离子 1-丁基-3-甲基咪唑阳离子 电渗析 分离
在线阅读 下载PDF
Structure characterization and electrochemical properties of new lithium salt LiODFB for electrolyte of lithium ion batteries 被引量:7
4
作者 高宏权 张治安 +2 位作者 赖延清 李劼 刘业翔 《Journal of Central South University of Technology》 EI 2008年第6期830-834,共5页
Lithium difluoro(axalato)borate (LiODFB) was synthesized in dimethyl carbonate (DMC) solvent and purified by the method of solventing-out crystallization. The structure characterization of the purified LiODFB was perf... Lithium difluoro(axalato)borate (LiODFB) was synthesized in dimethyl carbonate (DMC) solvent and purified by the method of solventing-out crystallization. The structure characterization of the purified LiODFB was performed by Fourier transform infrared (FTIR) spectrometry and nuclear magnetic resonance (NMR) spectrometry. The electrochemical properties of the cells using 1 mol/L LiPF6 and 1 mol/L LiODFB in ethylene carbonate (EC)/DMC were investigated, respectively. The results indicate that LiODFB can be reduced at about 1.5 V and form a robust protective solid electrolyte interface (SEI) film on the graphite surface in the first cycle. The graphite/LiNi1/3Mn1/3Co1/3O2 cells with LiODFB-based electrolyte have very good capacity retention at 55 ℃, and show very good rate capability at 0.5C and 1C charge/discharge rate. Therefore, as a new salt, LiODFB is a most promising alternative lithium salt to replace LiPF6 for lithium ion battery electrolytes in the future. 展开更多
关键词 lithium ion battery ELECTROLYTE lithium difluoro(axalato)borate synthesis electrochemical properties
在线阅读 下载PDF
Facile synthesis of hierarchically structured manganese oxides as anode for lithium-ion batteries 被引量:5
5
作者 DENG Zhao HUANG Xing +2 位作者 ZHAO Xu CHENG Hua WANG Hong-en 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1481-1492,共12页
Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical s... Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical spherical MnO2 containing coherent amorphous/crystalline domained by a simple yet effective redox precipitation reaction at room temperature.Further,flower-like CoMn2O4 constructed by single-crystalline spinel nanosheets has been fabricated using MnO2 as precursor.This mild methodology avoids undesired particle aggregation and loss of active surface area in conventional hydrothermal or solid-state processes.Moreover,both MnO2 and CoMn2O4 nanosheets manifest superior lithium-ion storage properties,rendering them promising applications in LIBs and other energy-related fields. 展开更多
关键词 manganese oxides nanostructures anode materials lithium ion batteries ELECTROCHEMISTRY
在线阅读 下载PDF
Fast-ionic conductor Li_(2.64)(Sc_(0.9)Ti_(0.1))_(2)(PO_(4))_(3) doped PVDF-HFP hybrid gel-electrolyte for lithium ion batteries 被引量:5
6
作者 WANG Zhen-yu LI Cong +5 位作者 HUANG Ying-de HE Zhen-jiang YAN Cheng MAO Jing DAI Ke-hua ZHENG Jun-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2980-2990,共11页
With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte s... With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte solidization development aims to solve the safety and electrochemical window problems.However,low ionic conductivity and poor physical performance prohibit its further application.Herein,a fast-ionic conductor(Li_(2.64)(Sc_(0.9)Ti_(0.1))_(2)(PO_(4))_(3))(LSTP)was added into poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)base gel-electrolyte to enhance mechanical properties and ionic conductivity.Evidences reveal that LSTP was able to weaken interforce between polymer chains,which increased the ionic conductibility and decreased interface resistance during the cycling significantly.The obtained LiFePO_(4)/hybrid gel-electrolyte/Li-metal coin cell exhibited excellent rate capacity(145 mA·h/g at 1C,95 mA·h/g at 3C,28℃)which presented a potential that can be comparable with commercialized liquid electrolyte system. 展开更多
关键词 lithium ion battery hybrid gel-electrolyte fast-ionic conductor inorganic filler electrochemical performance
在线阅读 下载PDF
Synthesis and characterization of triclinic structural LiVPO_4F as possible 4.2 V cathode materials for lithium ion batteries 被引量:8
7
作者 钟胜奎 尹周澜 +1 位作者 王志兴 陈启元 《Journal of Central South University of Technology》 EI 2007年第3期340-343,共4页
A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted un... A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V^3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with ElF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p I ), isostructural with the naturally occurring mineral tavorite, EiFePO4-OH. SEM image exhibits that the particle size is about 2μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Ei/Li^+), and the capacity retains 89 mA·h/g after 30 cycles. 展开更多
关键词 lithium ion batteries cathode material LIVPO4F carbon-thermal reduction method
在线阅读 下载PDF
Equilibrium concentration of lithium ion in sodium aluminate solution 被引量:4
8
作者 HUANG Wen-qiang LIU Gui-hua +4 位作者 LIU Peng QI Tian-gui LI Xiao-bin PENG Zhi-hong ZHOU Qiu-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期304-311,共8页
Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated... Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated.Elevating temperature,increasing caustic soda concentration,reducing alumina concentration or raising molar ratioαk improved equilibrium concentration of lithium ion in sodium aluminate solution.Agitation speed had a minimal effect on lithium ion concentration.Over 0.65 g/L lithium ion equilibrium concentration was observed in digestion process,whereas 35 mg/L lithium ion concentration remained in solution after precipitation time of 9 h.Moreover,equilibrium concentration decreased sharply from digestion of boehmite or diaspore to seed precipitation,about 95%lithium was precipitated into red mud(bauxite residue)and aluminum hydroxide.This study provides a valuable perspective in removal or extraction of lithium from sodium aluminate solution in alumina refineries. 展开更多
关键词 lithium ion equilibrium concentration sodium aluminate solution DIGESTion PRECIPITATion
在线阅读 下载PDF
Layer by layer synthesis of Sn-Co-C microcomposites and their application in lithium ion batteries 被引量:4
9
作者 周向阳 邹幽兰 +2 位作者 杨娟 谢静 王松灿 《Journal of Central South University》 SCIE EI CAS 2013年第2期326-331,共6页
Alloy anodes were studied for pursuing Sn-based microcomposite synthesis, assembly and performance for lithium ion batteries. The self-assembled Sn-Co-C composites with nano-scaled microstructures were prepared via so... Alloy anodes were studied for pursuing Sn-based microcomposite synthesis, assembly and performance for lithium ion batteries. The self-assembled Sn-Co-C composites with nano-scaled microstructures were prepared via solution method and carbothermal technology. The morphology and physical structure were investigated with scanning electron microscope (SEM) and X-ray diffraction (XRD). The as-prepared materials were assembled to half cell coin for the purpose of discussing the galvanostatic cycling, cyclic voltammetry and rate-capability performance. Results reveal that nanoscaled CoSn 2 alloys covered with Sn and C layer by layer are wrapped by cross-linked porous carbon network to form spherical microstructure. This distinguishing feature of Sn-Co-C composites provides a possible solution to the problems of Sn particle aggregation and poor electron transport, and has strong effect on improving electrochemical performance. 展开更多
关键词 Sn-Co-C composite HYDROLYSIS carbothermal technology electrochemical performance lithium ion battery
在线阅读 下载PDF
Carbonaceous mesophase spherule/activated carbon composite as anode materials for super lithium ion capacitors 被引量:3
10
作者 杨娟 周向阳 +1 位作者 李劼 娄世菊 《Journal of Central South University》 SCIE EI CAS 2011年第4期972-977,共6页
A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the a... A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the active carbon shell precursor.The structures of the composites were examined by scanning electron microscopy and X-ray diffractometry.The electrochemical performance was investigated in electric double layer capacitor and half-cell.The results show that,the composite exhibits good performance in both capacitor and battery with a high reversible capacity of 306.6 mA·h/g(0.2C) in the half-cell,along with a capacitance of 25.8 F/g in the capacitor when an optimum ratio of carbonaceous mesophase spherules to active carbon is adopted.The composite also shows a favorable rate performance and good cycle ability.A working model of this anode in super lithium ion capacitors was established. 展开更多
关键词 super lithium ion capacitor carbonaceous mesophase spherule active carbon compound anode
在线阅读 下载PDF
Effect of binary conductive additive mixtures on electrochemical performance of polyoxomolybdate as cathode material of lithium ion battery 被引量:1
11
作者 李文良 倪尔福 +1 位作者 李新海 郭华军 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2506-2512,共7页
Binary carbon mixtures, carbon black ECP 600JD(ECP) combined with vapor grown carbon fiber(VGCF) or carbon nanotube(CNT), or graphene(Gr) in different mass ratios, are investigated as the conductive additives for the ... Binary carbon mixtures, carbon black ECP 600JD(ECP) combined with vapor grown carbon fiber(VGCF) or carbon nanotube(CNT), or graphene(Gr) in different mass ratios, are investigated as the conductive additives for the cathode material polyoxomolybadate Na_3[AlMo_6O_(24)H_6](NAM). Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy show that the surfaces of NAM particles are covered homogeneously with the binary conductive additive mixtures except the combination of ECP and CNT. The optimum combination is the mixture of ECP and VGCF, which shows higher discharge capacity than the combinations of ECP and CNT or Gr. Initial discharge capacities of 364, 339, and 291 m A·h/g are obtained by the combination of ECP and VGCF in the mass ratios of 2:1, 1:1, and 1:2, respectively. The results of electrochemical impedance spectra and 4-pin probe measurements demonstrate that the combination of ECP and VGCF exhibits the highest electrical conductivity for the electrode. 展开更多
关键词 lithium ion battery CATHODE Na3[AlMo6O24H6](NAM) conductive additive
在线阅读 下载PDF
Characteristics of LiCoO2, LiMn2O4 and LiNi0.45Co0.1Mn0.45O2 as cathodes of lithium ion batteries 被引量:5
12
作者 GUO Hua-jun LI Xin-hai ZHANG Xin-ming ZENG Su-ming WANG Zhi-xing PENG Wen-jie 《Journal of Central South University of Technology》 2005年第z1期44-49,共6页
LiNi0. 45 Co0. 10 Mn0. 4sO2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 ℃ in air. The structures and characteristics of LiNi0. 45 Co0.10 Mn0. 45 O2, LiCoO2 and LiMn2 O4 were ... LiNi0. 45 Co0. 10 Mn0. 4sO2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 ℃ in air. The structures and characteristics of LiNi0. 45 Co0.10 Mn0. 45 O2, LiCoO2 and LiMn2 O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.4s Co0.10 Mn0. 45 O2 has a layered structure with hexagonal lattice. The commercial LicoO2 has sphere-like appearance and smooth surfaces, while the LiMn2 O4 and LiNi0.45 Co0. 10 Mn0. 45 O2 consist of cornered and uneven particles. LiNi0. 45 Co0.10 Mn0. 45 O2 has a large disLiMn2 O4 and LiCoO2, respectively. LiCoO2 and LiMn2 O4 have higher discharge voltage and better rate-capability than LiNi0. 45Co0.10 Mn0. 45 O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3 % at the 250th cycle. Batteries with LiMn2 O4 or LiNi0.45 Co0.10 Mn0. 45 O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes. 展开更多
关键词 lithium ion batteries CATHODE LICOO2 LIMN2O4 LiNi0. 45 Co0. 10 Mn0. 45 O2
在线阅读 下载PDF
Optimizing pyrolysis of resin carbon for anode of lithium ion batteries 被引量:1
13
作者 郭华军 李新海 +3 位作者 张新明 王志兴 彭文杰 张宝 《Journal of Central South University of Technology》 EI 2006年第1期58-62,共5页
Pyrolytic resin carbon anode for lithoum ion batteries was prepared from thermosetting phenolic resin. Pyrolysis of the primary phenolic resin and the dewatered one was studied by thermal gravimetric analysis. Structu... Pyrolytic resin carbon anode for lithoum ion batteries was prepared from thermosetting phenolic resin. Pyrolysis of the primary phenolic resin and the dewatered one was studied by thermal gravimetric analysis. Structures and characteristics of the carbon materials were determined by X-ray diffraction, Brunauer-Emmer-Teller surface area analysis and electrochemical measurements. With the increase of pyrolyzing temperature and soaking time, the resin carbon material has larger crystallite sizes of L_c and L_a, lower specific surface area, smaller irreversible capacity and higher initial coulombic efficiency. The pyrolyzing temperature and soaking time are optimized to be 1050℃ and 2h. The resin carbon anode obtained under the optimum conditions shows good electrochemical performances with reversible capacity of 387mA·h/g and initial coulombic efficiency of 69.1%. 展开更多
关键词 lithium ion battery CARBON phenolic resin ANODE
在线阅读 下载PDF
Synthesis of lithium difluoro(oxalate)borate(LiODFB), phase diagram and ions coordination of LiODFB in dimethyl carbonate 被引量:1
14
作者 ZHOU Hong-ming XIAO Kai-wen +2 位作者 LI Jian XIAO De-min JIANG Yi-xiong 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期550-560,共11页
A new two-step synthetic method was successfully developed to simplify the recrystallization process of lithium difluoro(oxalate)borate(LiODFB).Meanwhile,the purity of LiODFB as-prepared was determined by NMR,ICP-AES ... A new two-step synthetic method was successfully developed to simplify the recrystallization process of lithium difluoro(oxalate)borate(LiODFB).Meanwhile,the purity of LiODFB as-prepared was determined by NMR,ICP-AES and Karl Fisher measurements,respectively.The as-prepared LiODFB presents a high purity up to 99.95%.Its metal ions and water contents are under good control as well.Besides,its structure information and thermal properties were confirmed by FTIR,Raman and DSC-TGA analyses,respectively.LiODFB exerts fine thermostability and hypo-water-sensitivity and its structure information agrees well with previous literature.Furthermore,a combination of phase diagram and Raman spectroscopy were utilized to study the thermal phase behavior and ions coordination of LiODFB-DMC binary system to optimize the synthesis and recrystallization process.Although there are three types of molecular interaction forms(CIPs,AGG-IIa,AGG-IIIb)in LiODFB-DMC binary system,LiODFB can only be isolated as large single crystal solvate as LiODFB·(DMC)3/2 by slowly cooling subjected to the nucleation kinetics.Therefore,the fundamental information of our work is helpful in accelerating the application of LiODFB in Li-ion secondary batteries. 展开更多
关键词 lithium difluoro(oxalate)borate two-step synthesis recrystallization phase diagram ions coordination
在线阅读 下载PDF
Soft chemical synthesis and electrochemical properties of tin oxide-based materials as anodes for lithium ion batteries 被引量:1
15
作者 何则强 李新海 +4 位作者 熊利芝 吴显明 刘恩辉 侯朝辉 邓凌峰 《Journal of Central South University of Technology》 2004年第2期142-146,共5页
A novel soft chemical approach was developed to synthesize tin oxide-based powders. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning ele... A novel soft chemical approach was developed to synthesize tin oxide-based powders. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning electron microscope and electrochemical methods. The results show that the particles of tin oxide-based materials form an interconnected network structure like mesoporous material. The average size of the particles is about 200 nm. The materials deliver a charge capacity of more than 570 mA·h·g-1. And the capacity loss per cycle is about 0.15% after being cycled for 30 times. The good electrochemical performance indicates that tin oxide-based materials are promising anodes for lithium ion batteries. 展开更多
关键词 lithium ion battery tin oxide ANODE soft chemical synthesis electrochemical property
在线阅读 下载PDF
Preparation of LiFePO_4 for lithium ion battery using Fe_2P_2O_7 as precursor 被引量:1
16
作者 胡国荣 肖政伟 +2 位作者 彭忠东 杜柯 邓新荣 《Journal of Central South University of Technology》 2008年第4期531-534,共4页
In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepare... In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively. 展开更多
关键词 lithium ion battery cathode material PREPARATion PRECURSOR LIFEPO4 Fe2P2O7
在线阅读 下载PDF
Li^(+)浓度对化学增强锂铝硅玻璃性能的影响
17
作者 田昊东 徐驰 +2 位作者 胥爽 李现梓 祖成奎 《材料导报》 EI CAS CSCD 北大核心 2024年第S01期137-142,共6页
采用一步法化学增强工艺,研究了熔盐中Li^(+)的富集对不同厚度锂铝硅玻璃表面压应力、应力层深度、弯曲强度、硬度等性能的影响,选择Na_(3)PO_(4)作为熔盐除杂剂并对净化效果进行了评定。研究表明:熔盐中Li^(+)浓度增加至4800×10^(... 采用一步法化学增强工艺,研究了熔盐中Li^(+)的富集对不同厚度锂铝硅玻璃表面压应力、应力层深度、弯曲强度、硬度等性能的影响,选择Na_(3)PO_(4)作为熔盐除杂剂并对净化效果进行了评定。研究表明:熔盐中Li^(+)浓度增加至4800×10^(-6),3 mm化学增强锂铝硅玻璃的表面压应力、弯曲强度、硬度下降16.8%、16.8%、10.6%;8 mm化学增强锂铝硅玻璃的表面压应力、弯曲强度、硬度下降17.6%、14.7%、9.8%。熔盐中Li^(+)浓度的变化未对化学增强锂铝硅玻璃应力层深度产生明显影响。Na_(3)PO_(4)具有较好的除杂效果,化学增强锂铝硅玻璃的表面压应力、弯曲强度、硬度得到了明显的恢复,为保证化学增强锂铝硅玻璃在可见光波段具有较高的透光率,除杂剂Na_(3)PO_(4)的掺量不宜超过1%(质量分数)。 展开更多
关键词 锂铝硅玻璃 化学增强 离子交换 Li^(+)浓度 熔盐净化 半无限扩散模型
在线阅读 下载PDF
Structure and stability of Li-Mn-Ni composite oxides as lithium ion sieve precursors in acidic medium
18
作者 马立文 陈白珍 +2 位作者 石西昌 张文 杨喜云 《Journal of Central South University》 SCIE EI CAS 2011年第2期314-318,共5页
A series of spinel Li-Mn-Ni composite oxides with theoretical chemical formula of LiNixMn2-xO4 (0〈_x〈_1.0) were synthesized by liquid phase method. Their structure and morphology were characterized by X-ray diffra... A series of spinel Li-Mn-Ni composite oxides with theoretical chemical formula of LiNixMn2-xO4 (0〈_x〈_1.0) were synthesized by liquid phase method. Their structure and morphology were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM), respectively. The stability of these Ni-substituted spinel oxides prepared at different temperatures was investigated in acidic medium as well. The results show that Ni can be brought into the spinel framework completely to form well-crystallized product when x〈_0.5 and the optimized synthesis temperature is 800℃. LiNi0.4Mn1.6O4 prepared at 800℃ can maintain the spinel structure and morphology with Li extraction ratio of 30.37%, Mn extraction ratio of 8.78% and Ni extraction ratio of 1,82% during acid treatment. The incorporated Ni not only inhibits the dissolution of Mn, but also reduces the extraction of Li due to the lattice contraction 展开更多
关键词 lithium ion sieve Li-Mn-Ni composite oxide structure STABILITY
在线阅读 下载PDF
Preparation and electrochemical properties of Co_3O_4/graphite composites as anodes of lithium ion batteries
19
作者 郭华军 李向群 +4 位作者 李新海 王志兴 彭文杰 孙乾明 谢杰 《Journal of Central South University》 SCIE EI CAS 2010年第3期498-503,共6页
Co3O4/graphite composites were synthesized by precipitation of cobalt oxalate on the surface of graphite and pyrolysis of the precipitate, and the effects of graphite content and calcination temperature on the electro... Co3O4/graphite composites were synthesized by precipitation of cobalt oxalate on the surface of graphite and pyrolysis of the precipitate, and the effects of graphite content and calcination temperature on the electrochemical properties of the composites were investigated. The samples were characterized by thermogravimetry and differential thermal analysis (TG/DTA), X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge/discharge measurements. With increasing the graphite content, the reversible capacity of the Co3O4/graphite composites decreases, while cycling stability improves dramatically, and the addition of graphite obviously decreases the average potential of lithium intercalation/deintercalation. The reversible capacity of the composites with 50% graphite rises from 583 to 725 mA-h/g as the calcination temperature increases from 300 to 500 ℃, and the Co304/graphite composites synthesized at 400 ℃ show the best cycling stability without capacity loss in the initial 20 cycles. peaks, corresponding to the lithium intercalaction/deintercalation for The CV profile of the composite presents two couples of redox graphite and Co3O4, respectively. EIS studies indicate that the electrochemical impedance decreases with increasing the graphite content. 展开更多
关键词 composite materials cobalt oxides lithium ion batteries GRAPHITE electrochemical properties PRECIPITATion
在线阅读 下载PDF
基于ISSA-CNN-BiGRU-Attention的锂电池健康状态评估 被引量:6
20
作者 陈新岗 赵龙 +2 位作者 马志鹏 李松 张知先 《电子测量技术》 北大核心 2024年第8期45-52,共8页
健康状态(SOH)预测对于电池管理系统至关重要。针对电池健康状态评估建模复杂、预测误差大等问题,准确的SOH预测仍需要改进。本文结合容量增量分析(ICA)和差分电压分析(DVA)方法,提出了一种改进麻雀优化算法(ISSA)-卷积神经网络(CNN)-... 健康状态(SOH)预测对于电池管理系统至关重要。针对电池健康状态评估建模复杂、预测误差大等问题,准确的SOH预测仍需要改进。本文结合容量增量分析(ICA)和差分电压分析(DVA)方法,提出了一种改进麻雀优化算法(ISSA)-卷积神经网络(CNN)-双向门控递归单元(BiGRU)-注意力机制(Attention)的锂电池健康状态评估方法。通过对容量增量(IC)曲线和差分电压(DV)曲线进行高斯滤波处理,避免了噪声的影响。通过马里兰大学先进的生命周期工程中心(CALCE)数据进行处理,从滤波后的IC和DV曲线上提取一组新的电池老化特征,所提4个老化特征与SOH之间的Pearson相关系数在0.9以上。使用ISSA-CNN-BiGRU-Attention方法来构建电池SOH的预测模型,将所提方法与CNN、BiGRU、CNN-BiGRU等方法进行比较,实验结果表明,该方法的MAE与RMSE误差最大值分别为0.00544和0.00717,对比其他模型,具有优秀的鲁棒性和准确性,具有更好的实际使用价值。 展开更多
关键词 锂离子电池 SOH 容量增量分析 差分电压分析 CNN BiGRU
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部