Sm^(3+)-doped materials exhibit red and orange emissions in the visible light region,showing broad applica⁃tion prospects in both laser and display material fields.However,the inherent small emission and absorption cr...Sm^(3+)-doped materials exhibit red and orange emissions in the visible light region,showing broad applica⁃tion prospects in both laser and display material fields.However,the inherent small emission and absorption cross-sections of Sm^(3+)result in low luminous efficiency,posing challenges for achieving high-quality solid-state lighting.Here,the excellent white emission of Sm^(3+)doped lithium aluminum silicate(LAS)glass was realized by introducing the Ag aggregates through Ag ion exchange.Under 395 nm excitation,the Ag-doped samples exhibit significant fluo⁃rescence enhancement with color coordinates close to the equal energy white point E(0.33,0.33)and a color ren⁃dering index(CRI)of 81.8.The study reveals that the surface plasmon resonance(SPR)effect of Ag nanoparticles enhances the luminescence of Sm^(3+),while the energy transfer mechanism between Ag^(+)and Sm^(3+)also promotes fluores⁃cence enhancement.By adjusting the concentration of AgNO_(3) and the exchange time,a series of high-quality full-spectrum white light emissions were obtained,indicating that the Ag ion-exchanged Sm^(3+)-doped LAS glass has good application potential in the development of solid-state lighting devices.Moreover,variations in the excitation wave⁃length can effectively tune the emission color,further demonstrating the tunability and practicality of this material in optoelectronic applications.展开更多
Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite fo...Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns,significantly impeding their advancement towards widespread commercial viability.Herein,a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges.The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites,facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation.Additionally,these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling.The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability,superior rate performance and high-capacity retention.This work confirms that the synergy between a 3 D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes,offering innovative insights for the practical deployment of lithium metal batteries.展开更多
Lithium difluoro(axalato)borate (LiODFB) was synthesized in dimethyl carbonate (DMC) solvent and purified by the method of solventing-out crystallization. The structure characterization of the purified LiODFB was perf...Lithium difluoro(axalato)borate (LiODFB) was synthesized in dimethyl carbonate (DMC) solvent and purified by the method of solventing-out crystallization. The structure characterization of the purified LiODFB was performed by Fourier transform infrared (FTIR) spectrometry and nuclear magnetic resonance (NMR) spectrometry. The electrochemical properties of the cells using 1 mol/L LiPF6 and 1 mol/L LiODFB in ethylene carbonate (EC)/DMC were investigated, respectively. The results indicate that LiODFB can be reduced at about 1.5 V and form a robust protective solid electrolyte interface (SEI) film on the graphite surface in the first cycle. The graphite/LiNi1/3Mn1/3Co1/3O2 cells with LiODFB-based electrolyte have very good capacity retention at 55 ℃, and show very good rate capability at 0.5C and 1C charge/discharge rate. Therefore, as a new salt, LiODFB is a most promising alternative lithium salt to replace LiPF6 for lithium ion battery electrolytes in the future.展开更多
Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical s...Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical spherical MnO2 containing coherent amorphous/crystalline domained by a simple yet effective redox precipitation reaction at room temperature.Further,flower-like CoMn2O4 constructed by single-crystalline spinel nanosheets has been fabricated using MnO2 as precursor.This mild methodology avoids undesired particle aggregation and loss of active surface area in conventional hydrothermal or solid-state processes.Moreover,both MnO2 and CoMn2O4 nanosheets manifest superior lithium-ion storage properties,rendering them promising applications in LIBs and other energy-related fields.展开更多
With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte s...With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte solidization development aims to solve the safety and electrochemical window problems.However,low ionic conductivity and poor physical performance prohibit its further application.Herein,a fast-ionic conductor(Li_(2.64)(Sc_(0.9)Ti_(0.1))_(2)(PO_(4))_(3))(LSTP)was added into poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)base gel-electrolyte to enhance mechanical properties and ionic conductivity.Evidences reveal that LSTP was able to weaken interforce between polymer chains,which increased the ionic conductibility and decreased interface resistance during the cycling significantly.The obtained LiFePO_(4)/hybrid gel-electrolyte/Li-metal coin cell exhibited excellent rate capacity(145 mA·h/g at 1C,95 mA·h/g at 3C,28℃)which presented a potential that can be comparable with commercialized liquid electrolyte system.展开更多
A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted un...A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V^3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with ElF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p I ), isostructural with the naturally occurring mineral tavorite, EiFePO4-OH. SEM image exhibits that the particle size is about 2μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Ei/Li^+), and the capacity retains 89 mA·h/g after 30 cycles.展开更多
Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated...Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated.Elevating temperature,increasing caustic soda concentration,reducing alumina concentration or raising molar ratioαk improved equilibrium concentration of lithium ion in sodium aluminate solution.Agitation speed had a minimal effect on lithium ion concentration.Over 0.65 g/L lithium ion equilibrium concentration was observed in digestion process,whereas 35 mg/L lithium ion concentration remained in solution after precipitation time of 9 h.Moreover,equilibrium concentration decreased sharply from digestion of boehmite or diaspore to seed precipitation,about 95%lithium was precipitated into red mud(bauxite residue)and aluminum hydroxide.This study provides a valuable perspective in removal or extraction of lithium from sodium aluminate solution in alumina refineries.展开更多
Alloy anodes were studied for pursuing Sn-based microcomposite synthesis, assembly and performance for lithium ion batteries. The self-assembled Sn-Co-C composites with nano-scaled microstructures were prepared via so...Alloy anodes were studied for pursuing Sn-based microcomposite synthesis, assembly and performance for lithium ion batteries. The self-assembled Sn-Co-C composites with nano-scaled microstructures were prepared via solution method and carbothermal technology. The morphology and physical structure were investigated with scanning electron microscope (SEM) and X-ray diffraction (XRD). The as-prepared materials were assembled to half cell coin for the purpose of discussing the galvanostatic cycling, cyclic voltammetry and rate-capability performance. Results reveal that nanoscaled CoSn 2 alloys covered with Sn and C layer by layer are wrapped by cross-linked porous carbon network to form spherical microstructure. This distinguishing feature of Sn-Co-C composites provides a possible solution to the problems of Sn particle aggregation and poor electron transport, and has strong effect on improving electrochemical performance.展开更多
A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the a...A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the active carbon shell precursor.The structures of the composites were examined by scanning electron microscopy and X-ray diffractometry.The electrochemical performance was investigated in electric double layer capacitor and half-cell.The results show that,the composite exhibits good performance in both capacitor and battery with a high reversible capacity of 306.6 mA·h/g(0.2C) in the half-cell,along with a capacitance of 25.8 F/g in the capacitor when an optimum ratio of carbonaceous mesophase spherules to active carbon is adopted.The composite also shows a favorable rate performance and good cycle ability.A working model of this anode in super lithium ion capacitors was established.展开更多
Binary carbon mixtures, carbon black ECP 600JD(ECP) combined with vapor grown carbon fiber(VGCF) or carbon nanotube(CNT), or graphene(Gr) in different mass ratios, are investigated as the conductive additives for the ...Binary carbon mixtures, carbon black ECP 600JD(ECP) combined with vapor grown carbon fiber(VGCF) or carbon nanotube(CNT), or graphene(Gr) in different mass ratios, are investigated as the conductive additives for the cathode material polyoxomolybadate Na_3[AlMo_6O_(24)H_6](NAM). Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy show that the surfaces of NAM particles are covered homogeneously with the binary conductive additive mixtures except the combination of ECP and CNT. The optimum combination is the mixture of ECP and VGCF, which shows higher discharge capacity than the combinations of ECP and CNT or Gr. Initial discharge capacities of 364, 339, and 291 m A·h/g are obtained by the combination of ECP and VGCF in the mass ratios of 2:1, 1:1, and 1:2, respectively. The results of electrochemical impedance spectra and 4-pin probe measurements demonstrate that the combination of ECP and VGCF exhibits the highest electrical conductivity for the electrode.展开更多
LiNi0. 45 Co0. 10 Mn0. 4sO2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 ℃ in air. The structures and characteristics of LiNi0. 45 Co0.10 Mn0. 45 O2, LiCoO2 and LiMn2 O4 were ...LiNi0. 45 Co0. 10 Mn0. 4sO2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 ℃ in air. The structures and characteristics of LiNi0. 45 Co0.10 Mn0. 45 O2, LiCoO2 and LiMn2 O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.4s Co0.10 Mn0. 45 O2 has a layered structure with hexagonal lattice. The commercial LicoO2 has sphere-like appearance and smooth surfaces, while the LiMn2 O4 and LiNi0.45 Co0. 10 Mn0. 45 O2 consist of cornered and uneven particles. LiNi0. 45 Co0.10 Mn0. 45 O2 has a large disLiMn2 O4 and LiCoO2, respectively. LiCoO2 and LiMn2 O4 have higher discharge voltage and better rate-capability than LiNi0. 45Co0.10 Mn0. 45 O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3 % at the 250th cycle. Batteries with LiMn2 O4 or LiNi0.45 Co0.10 Mn0. 45 O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes.展开更多
Pyrolytic resin carbon anode for lithoum ion batteries was prepared from thermosetting phenolic resin. Pyrolysis of the primary phenolic resin and the dewatered one was studied by thermal gravimetric analysis. Structu...Pyrolytic resin carbon anode for lithoum ion batteries was prepared from thermosetting phenolic resin. Pyrolysis of the primary phenolic resin and the dewatered one was studied by thermal gravimetric analysis. Structures and characteristics of the carbon materials were determined by X-ray diffraction, Brunauer-Emmer-Teller surface area analysis and electrochemical measurements. With the increase of pyrolyzing temperature and soaking time, the resin carbon material has larger crystallite sizes of L_c and L_a, lower specific surface area, smaller irreversible capacity and higher initial coulombic efficiency. The pyrolyzing temperature and soaking time are optimized to be 1050℃ and 2h. The resin carbon anode obtained under the optimum conditions shows good electrochemical performances with reversible capacity of 387mA·h/g and initial coulombic efficiency of 69.1%.展开更多
A new two-step synthetic method was successfully developed to simplify the recrystallization process of lithium difluoro(oxalate)borate(LiODFB).Meanwhile,the purity of LiODFB as-prepared was determined by NMR,ICP-AES ...A new two-step synthetic method was successfully developed to simplify the recrystallization process of lithium difluoro(oxalate)borate(LiODFB).Meanwhile,the purity of LiODFB as-prepared was determined by NMR,ICP-AES and Karl Fisher measurements,respectively.The as-prepared LiODFB presents a high purity up to 99.95%.Its metal ions and water contents are under good control as well.Besides,its structure information and thermal properties were confirmed by FTIR,Raman and DSC-TGA analyses,respectively.LiODFB exerts fine thermostability and hypo-water-sensitivity and its structure information agrees well with previous literature.Furthermore,a combination of phase diagram and Raman spectroscopy were utilized to study the thermal phase behavior and ions coordination of LiODFB-DMC binary system to optimize the synthesis and recrystallization process.Although there are three types of molecular interaction forms(CIPs,AGG-IIa,AGG-IIIb)in LiODFB-DMC binary system,LiODFB can only be isolated as large single crystal solvate as LiODFB·(DMC)3/2 by slowly cooling subjected to the nucleation kinetics.Therefore,the fundamental information of our work is helpful in accelerating the application of LiODFB in Li-ion secondary batteries.展开更多
A novel soft chemical approach was developed to synthesize tin oxide-based powders. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning ele...A novel soft chemical approach was developed to synthesize tin oxide-based powders. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning electron microscope and electrochemical methods. The results show that the particles of tin oxide-based materials form an interconnected network structure like mesoporous material. The average size of the particles is about 200 nm. The materials deliver a charge capacity of more than 570 mA·h·g-1. And the capacity loss per cycle is about 0.15% after being cycled for 30 times. The good electrochemical performance indicates that tin oxide-based materials are promising anodes for lithium ion batteries.展开更多
In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepare...In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.展开更多
A series of spinel Li-Mn-Ni composite oxides with theoretical chemical formula of LiNixMn2-xO4 (0〈_x〈_1.0) were synthesized by liquid phase method. Their structure and morphology were characterized by X-ray diffra...A series of spinel Li-Mn-Ni composite oxides with theoretical chemical formula of LiNixMn2-xO4 (0〈_x〈_1.0) were synthesized by liquid phase method. Their structure and morphology were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM), respectively. The stability of these Ni-substituted spinel oxides prepared at different temperatures was investigated in acidic medium as well. The results show that Ni can be brought into the spinel framework completely to form well-crystallized product when x〈_0.5 and the optimized synthesis temperature is 800℃. LiNi0.4Mn1.6O4 prepared at 800℃ can maintain the spinel structure and morphology with Li extraction ratio of 30.37%, Mn extraction ratio of 8.78% and Ni extraction ratio of 1,82% during acid treatment. The incorporated Ni not only inhibits the dissolution of Mn, but also reduces the extraction of Li due to the lattice contraction展开更多
Co3O4/graphite composites were synthesized by precipitation of cobalt oxalate on the surface of graphite and pyrolysis of the precipitate, and the effects of graphite content and calcination temperature on the electro...Co3O4/graphite composites were synthesized by precipitation of cobalt oxalate on the surface of graphite and pyrolysis of the precipitate, and the effects of graphite content and calcination temperature on the electrochemical properties of the composites were investigated. The samples were characterized by thermogravimetry and differential thermal analysis (TG/DTA), X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge/discharge measurements. With increasing the graphite content, the reversible capacity of the Co3O4/graphite composites decreases, while cycling stability improves dramatically, and the addition of graphite obviously decreases the average potential of lithium intercalation/deintercalation. The reversible capacity of the composites with 50% graphite rises from 583 to 725 mA-h/g as the calcination temperature increases from 300 to 500 ℃, and the Co304/graphite composites synthesized at 400 ℃ show the best cycling stability without capacity loss in the initial 20 cycles. peaks, corresponding to the lithium intercalaction/deintercalation for The CV profile of the composite presents two couples of redox graphite and Co3O4, respectively. EIS studies indicate that the electrochemical impedance decreases with increasing the graphite content.展开更多
文摘Sm^(3+)-doped materials exhibit red and orange emissions in the visible light region,showing broad applica⁃tion prospects in both laser and display material fields.However,the inherent small emission and absorption cross-sections of Sm^(3+)result in low luminous efficiency,posing challenges for achieving high-quality solid-state lighting.Here,the excellent white emission of Sm^(3+)doped lithium aluminum silicate(LAS)glass was realized by introducing the Ag aggregates through Ag ion exchange.Under 395 nm excitation,the Ag-doped samples exhibit significant fluo⁃rescence enhancement with color coordinates close to the equal energy white point E(0.33,0.33)and a color ren⁃dering index(CRI)of 81.8.The study reveals that the surface plasmon resonance(SPR)effect of Ag nanoparticles enhances the luminescence of Sm^(3+),while the energy transfer mechanism between Ag^(+)and Sm^(3+)also promotes fluores⁃cence enhancement.By adjusting the concentration of AgNO_(3) and the exchange time,a series of high-quality full-spectrum white light emissions were obtained,indicating that the Ag ion-exchanged Sm^(3+)-doped LAS glass has good application potential in the development of solid-state lighting devices.Moreover,variations in the excitation wave⁃length can effectively tune the emission color,further demonstrating the tunability and practicality of this material in optoelectronic applications.
基金Project(2023YFC3905904)supported by the National Key Research and Development Program,ChinaProject(2220197000221)supported by the Team of Foshan National Hi-Tech Industrial Development Zone Industrialization Entrepreneurial Teams Program,ChinaProject(2024ZZTS0373)supported by the Central South University Graduate Student Autonomous Exploration Innovative Programme,China。
文摘Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns,significantly impeding their advancement towards widespread commercial viability.Herein,a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges.The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites,facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation.Additionally,these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling.The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability,superior rate performance and high-capacity retention.This work confirms that the synergy between a 3 D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes,offering innovative insights for the practical deployment of lithium metal batteries.
基金Project(2007BAE12B01) supported by the National Key Technology Research and Development Program of ChinaProject(20803095) supported by the National Natural Science Foundation of China
文摘Lithium difluoro(axalato)borate (LiODFB) was synthesized in dimethyl carbonate (DMC) solvent and purified by the method of solventing-out crystallization. The structure characterization of the purified LiODFB was performed by Fourier transform infrared (FTIR) spectrometry and nuclear magnetic resonance (NMR) spectrometry. The electrochemical properties of the cells using 1 mol/L LiPF6 and 1 mol/L LiODFB in ethylene carbonate (EC)/DMC were investigated, respectively. The results indicate that LiODFB can be reduced at about 1.5 V and form a robust protective solid electrolyte interface (SEI) film on the graphite surface in the first cycle. The graphite/LiNi1/3Mn1/3Co1/3O2 cells with LiODFB-based electrolyte have very good capacity retention at 55 ℃, and show very good rate capability at 0.5C and 1C charge/discharge rate. Therefore, as a new salt, LiODFB is a most promising alternative lithium salt to replace LiPF6 for lithium ion battery electrolytes in the future.
基金Project(JCYJ20170817110251498)supported by the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2016TQ03C919)supported by the Guangdong Special Support for the Science and Technology Leading Young Scientist,ChinaProject(21603094)supported by the National Natural Science Foundation of China
文摘Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical spherical MnO2 containing coherent amorphous/crystalline domained by a simple yet effective redox precipitation reaction at room temperature.Further,flower-like CoMn2O4 constructed by single-crystalline spinel nanosheets has been fabricated using MnO2 as precursor.This mild methodology avoids undesired particle aggregation and loss of active surface area in conventional hydrothermal or solid-state processes.Moreover,both MnO2 and CoMn2O4 nanosheets manifest superior lithium-ion storage properties,rendering them promising applications in LIBs and other energy-related fields.
基金Projects(51974368,51774333) supported by the National Natural Science Foundation of ChinaProject(2020JJ2048) supported by the Hunan Provincial Natural Science Foundation of China。
文摘With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte solidization development aims to solve the safety and electrochemical window problems.However,low ionic conductivity and poor physical performance prohibit its further application.Herein,a fast-ionic conductor(Li_(2.64)(Sc_(0.9)Ti_(0.1))_(2)(PO_(4))_(3))(LSTP)was added into poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)base gel-electrolyte to enhance mechanical properties and ionic conductivity.Evidences reveal that LSTP was able to weaken interforce between polymer chains,which increased the ionic conductibility and decreased interface resistance during the cycling significantly.The obtained LiFePO_(4)/hybrid gel-electrolyte/Li-metal coin cell exhibited excellent rate capacity(145 mA·h/g at 1C,95 mA·h/g at 3C,28℃)which presented a potential that can be comparable with commercialized liquid electrolyte system.
基金Project(50302016) supported by the National Natural Science Foundation of China
文摘A potential 4.2 V cathode material LiVPO4F for lithium batteries was prepared by two-step reaction method based on a carbon-thermal reduction (CTR) process. Firstly, V2O5, NH4H2PO4 and acetylene black are reacted under an Ar atmosphere to yield VPO4. The transition-metal reduction is facilitated by the CTR based on C→CO transition. These CTR conditions favor stabilization of the vanadium as V^3+ as well as leaving residual carbon, which is useful in the subsequent electrode processing. Secondly, VPO4 reacts with ElF to yield LiVPO4F product. The property of the LiVPO4F was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD studies show that LiVPO4F synthesized has triclinic structure(space group p I ), isostructural with the naturally occurring mineral tavorite, EiFePO4-OH. SEM image exhibits that the particle size is about 2μm together with homogenous distribution. Electrochemical test shows that the initial discharge capacity of LiVPO4F powder is 119 mA·h/g at the rate of 0.2C with an average discharge voltage of 4.2V (vs Ei/Li^+), and the capacity retains 89 mA·h/g after 30 cycles.
基金Project(2015BAB04B01)supported by the National Key Technology R&D Program of ChinaProject(FA2017029)supported by Science and Technology Program of Chongzuo,ChinaProject(CSUZC201811)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Excess lithium in alumina is significantly bad for aluminum reduction.In this study,the concentration variation of lithium ion in sodium aluminate solution with addition of synthetic lithium aluminate was investigated.Elevating temperature,increasing caustic soda concentration,reducing alumina concentration or raising molar ratioαk improved equilibrium concentration of lithium ion in sodium aluminate solution.Agitation speed had a minimal effect on lithium ion concentration.Over 0.65 g/L lithium ion equilibrium concentration was observed in digestion process,whereas 35 mg/L lithium ion concentration remained in solution after precipitation time of 9 h.Moreover,equilibrium concentration decreased sharply from digestion of boehmite or diaspore to seed precipitation,about 95%lithium was precipitated into red mud(bauxite residue)and aluminum hydroxide.This study provides a valuable perspective in removal or extraction of lithium from sodium aluminate solution in alumina refineries.
基金Projects(51074185, 51274240) supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities
文摘Alloy anodes were studied for pursuing Sn-based microcomposite synthesis, assembly and performance for lithium ion batteries. The self-assembled Sn-Co-C composites with nano-scaled microstructures were prepared via solution method and carbothermal technology. The morphology and physical structure were investigated with scanning electron microscope (SEM) and X-ray diffraction (XRD). The as-prepared materials were assembled to half cell coin for the purpose of discussing the galvanostatic cycling, cyclic voltammetry and rate-capability performance. Results reveal that nanoscaled CoSn 2 alloys covered with Sn and C layer by layer are wrapped by cross-linked porous carbon network to form spherical microstructure. This distinguishing feature of Sn-Co-C composites provides a possible solution to the problems of Sn particle aggregation and poor electron transport, and has strong effect on improving electrochemical performance.
基金Project(2007BAE12B00) supported by the National Key Technology R&D Program of ChinaProject(50974136) supported by the National Natural Science Foundation of China
文摘A series of carbonaceous mesophase spherule/activated carbon composites were prepared as anode materials for super lithium ion capacitors using carbonaceous mesophase spherules as the core materials and pitch as the active carbon shell precursor.The structures of the composites were examined by scanning electron microscopy and X-ray diffractometry.The electrochemical performance was investigated in electric double layer capacitor and half-cell.The results show that,the composite exhibits good performance in both capacitor and battery with a high reversible capacity of 306.6 mA·h/g(0.2C) in the half-cell,along with a capacitance of 25.8 F/g in the capacitor when an optimum ratio of carbonaceous mesophase spherules to active carbon is adopted.The composite also shows a favorable rate performance and good cycle ability.A working model of this anode in super lithium ion capacitors was established.
文摘Binary carbon mixtures, carbon black ECP 600JD(ECP) combined with vapor grown carbon fiber(VGCF) or carbon nanotube(CNT), or graphene(Gr) in different mass ratios, are investigated as the conductive additives for the cathode material polyoxomolybadate Na_3[AlMo_6O_(24)H_6](NAM). Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy show that the surfaces of NAM particles are covered homogeneously with the binary conductive additive mixtures except the combination of ECP and CNT. The optimum combination is the mixture of ECP and VGCF, which shows higher discharge capacity than the combinations of ECP and CNT or Gr. Initial discharge capacities of 364, 339, and 291 m A·h/g are obtained by the combination of ECP and VGCF in the mass ratios of 2:1, 1:1, and 1:2, respectively. The results of electrochemical impedance spectra and 4-pin probe measurements demonstrate that the combination of ECP and VGCF exhibits the highest electrical conductivity for the electrode.
基金Project(50302016) supported by the National Natural Science Foundation of China Project(2005037698) supported by the Postdoctoral Science Foundation of China
文摘LiNi0. 45 Co0. 10 Mn0. 4sO2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 ℃ in air. The structures and characteristics of LiNi0. 45 Co0.10 Mn0. 45 O2, LiCoO2 and LiMn2 O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.4s Co0.10 Mn0. 45 O2 has a layered structure with hexagonal lattice. The commercial LicoO2 has sphere-like appearance and smooth surfaces, while the LiMn2 O4 and LiNi0.45 Co0. 10 Mn0. 45 O2 consist of cornered and uneven particles. LiNi0. 45 Co0.10 Mn0. 45 O2 has a large disLiMn2 O4 and LiCoO2, respectively. LiCoO2 and LiMn2 O4 have higher discharge voltage and better rate-capability than LiNi0. 45Co0.10 Mn0. 45 O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3 % at the 250th cycle. Batteries with LiMn2 O4 or LiNi0.45 Co0.10 Mn0. 45 O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes.
文摘Pyrolytic resin carbon anode for lithoum ion batteries was prepared from thermosetting phenolic resin. Pyrolysis of the primary phenolic resin and the dewatered one was studied by thermal gravimetric analysis. Structures and characteristics of the carbon materials were determined by X-ray diffraction, Brunauer-Emmer-Teller surface area analysis and electrochemical measurements. With the increase of pyrolyzing temperature and soaking time, the resin carbon material has larger crystallite sizes of L_c and L_a, lower specific surface area, smaller irreversible capacity and higher initial coulombic efficiency. The pyrolyzing temperature and soaking time are optimized to be 1050℃ and 2h. The resin carbon anode obtained under the optimum conditions shows good electrochemical performances with reversible capacity of 387mA·h/g and initial coulombic efficiency of 69.1%.
基金Project(51371198)supported by the National Natural Science Foundation of ChinaProject(K1202039-11)supported by the Science and Technology Project of Changsha,China
文摘A new two-step synthetic method was successfully developed to simplify the recrystallization process of lithium difluoro(oxalate)borate(LiODFB).Meanwhile,the purity of LiODFB as-prepared was determined by NMR,ICP-AES and Karl Fisher measurements,respectively.The as-prepared LiODFB presents a high purity up to 99.95%.Its metal ions and water contents are under good control as well.Besides,its structure information and thermal properties were confirmed by FTIR,Raman and DSC-TGA analyses,respectively.LiODFB exerts fine thermostability and hypo-water-sensitivity and its structure information agrees well with previous literature.Furthermore,a combination of phase diagram and Raman spectroscopy were utilized to study the thermal phase behavior and ions coordination of LiODFB-DMC binary system to optimize the synthesis and recrystallization process.Although there are three types of molecular interaction forms(CIPs,AGG-IIa,AGG-IIIb)in LiODFB-DMC binary system,LiODFB can only be isolated as large single crystal solvate as LiODFB·(DMC)3/2 by slowly cooling subjected to the nucleation kinetics.Therefore,the fundamental information of our work is helpful in accelerating the application of LiODFB in Li-ion secondary batteries.
文摘A novel soft chemical approach was developed to synthesize tin oxide-based powders. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning electron microscope and electrochemical methods. The results show that the particles of tin oxide-based materials form an interconnected network structure like mesoporous material. The average size of the particles is about 200 nm. The materials deliver a charge capacity of more than 570 mA·h·g-1. And the capacity loss per cycle is about 0.15% after being cycled for 30 times. The good electrochemical performance indicates that tin oxide-based materials are promising anodes for lithium ion batteries.
基金Project(50604018)supported by the National Natural Science Foundation of China
文摘In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.
基金Project(2008BAB35B04) supported by the National Key Technology R&D Program of ChinaProject(CX2010B111) supported by the Innovation Program of Doctoral Research of Hunan Province, ChinaProject(2010QZZD003) supported by Advanced Research Program of Central South University, China
文摘A series of spinel Li-Mn-Ni composite oxides with theoretical chemical formula of LiNixMn2-xO4 (0〈_x〈_1.0) were synthesized by liquid phase method. Their structure and morphology were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM), respectively. The stability of these Ni-substituted spinel oxides prepared at different temperatures was investigated in acidic medium as well. The results show that Ni can be brought into the spinel framework completely to form well-crystallized product when x〈_0.5 and the optimized synthesis temperature is 800℃. LiNi0.4Mn1.6O4 prepared at 800℃ can maintain the spinel structure and morphology with Li extraction ratio of 30.37%, Mn extraction ratio of 8.78% and Ni extraction ratio of 1,82% during acid treatment. The incorporated Ni not only inhibits the dissolution of Mn, but also reduces the extraction of Li due to the lattice contraction
基金Project(2007CB613607) supported by the National Basic Research Program of China Projects(2009FJ1002, 2009CK3062) supported by the Science and Technology Program of Hunan Province, China
文摘Co3O4/graphite composites were synthesized by precipitation of cobalt oxalate on the surface of graphite and pyrolysis of the precipitate, and the effects of graphite content and calcination temperature on the electrochemical properties of the composites were investigated. The samples were characterized by thermogravimetry and differential thermal analysis (TG/DTA), X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge/discharge measurements. With increasing the graphite content, the reversible capacity of the Co3O4/graphite composites decreases, while cycling stability improves dramatically, and the addition of graphite obviously decreases the average potential of lithium intercalation/deintercalation. The reversible capacity of the composites with 50% graphite rises from 583 to 725 mA-h/g as the calcination temperature increases from 300 to 500 ℃, and the Co304/graphite composites synthesized at 400 ℃ show the best cycling stability without capacity loss in the initial 20 cycles. peaks, corresponding to the lithium intercalaction/deintercalation for The CV profile of the composite presents two couples of redox graphite and Co3O4, respectively. EIS studies indicate that the electrochemical impedance decreases with increasing the graphite content.