期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
干法制备LiCoO_(2)电极的电化学性能
1
作者 田文燕 胡洪瑞 +2 位作者 刘富亮 刘江涛 石斌 《电池》 CAS 北大核心 2024年第5期677-681,共5页
电极的制备工艺对性能有重要的影响。采用干法电极工艺制备钴酸锂(LiCoO_(2))电极,通过SEM、X射线能谱、电阻率测试、电化学阻抗谱(EIS)和恒流充放电等方法研究干法电极的微观形貌、元素分布、导电性以及电化学性能。纤维化的聚四氟乙烯... 电极的制备工艺对性能有重要的影响。采用干法电极工艺制备钴酸锂(LiCoO_(2))电极,通过SEM、X射线能谱、电阻率测试、电化学阻抗谱(EIS)和恒流充放电等方法研究干法电极的微观形貌、元素分布、导电性以及电化学性能。纤维化的聚四氟乙烯(PTFE)广泛、均匀地分布在LiCoO_(2)活性物质颗粒的周围,在干法电极内部形成一个完整、致密的三维网状结构;电阻率和EIS测试表明,干法电极具有更好的导电性;以1.0 C在2.5~4.2 V循环200次,容量保持率为80.28%,优于湿法电极的72.85%,表明由纤维状的PTFE形成的三维网络结构可改善电池的循环稳定性,提升电化学性能。 展开更多
关键词 钴酸锂(licoo_(2)) 锂离子电池 干法电极 纤维化 三维网状结构 电化学性能
在线阅读 下载PDF
Al_2O_3包覆LiCoO_2对4.35V锂离子电池性能的影响 被引量:8
2
作者 王珍珍 郭密 +1 位作者 陈宇 江卫军 《电池》 CAS CSCD 北大核心 2014年第2期100-103,共4页
用固相法对钴酸锂(LiCoO2)正极材料进行纳米三氧化二铝(Al2O3)表面包覆,在充电终止电压为4.35 V时分析制备的495060AR型锂离子电池的性能。在放电截止电压为3.00 V时,以0.5 C放电,包覆、未包覆LiCoO2的比容量分别为167.6 mAh/g、170.9 m... 用固相法对钴酸锂(LiCoO2)正极材料进行纳米三氧化二铝(Al2O3)表面包覆,在充电终止电压为4.35 V时分析制备的495060AR型锂离子电池的性能。在放电截止电压为3.00 V时,以0.5 C放电,包覆、未包覆LiCoO2的比容量分别为167.6 mAh/g、170.9 mAh/g,平均电压分别为3.763 V、3.776 V;常温下1.0 C循环200次,包覆、未包覆LiCoO2的容量保持率分别为94.46%、96.40%。在55℃、48 h储存测试中,包覆LiCoO2制备的电池表现出更好的环境适应性;包覆LiCoO2制备的电池在高温45℃下以0.5 C循环200次,容量保持率为93.50%。对电池进行过充、热冲击测试,均未起火、爆炸。 展开更多
关键词 钴酸锂(licoo2) 包覆 三氧化二铝(Al2O3) 锂离子电池 lithium cobalt oxide(licoo2) aluminium oxide(Al2O3)
在线阅读 下载PDF
Li_(2)MgSiO_(4)包覆LiCoO_(2)正极材料的高电压性能 被引量:1
3
作者 申斌 刘万民 +1 位作者 秦牡兰 王伟刚 《电池》 CAS 北大核心 2021年第2期178-182,共5页
采用溶胶-凝胶法制备快离子导体硅酸镁锂(Li_(2)MgSiO_(4))包覆的钴酸锂(LiCoO_(2))正极材料,利用XRD、SEM和能量散射谱(EDS)等分析样品的晶体结构、形貌和元素组成。Li_(2)MgSiO_(4)包覆未破坏LiCoO_(2)的层状结构,且包覆层分布均匀,... 采用溶胶-凝胶法制备快离子导体硅酸镁锂(Li_(2)MgSiO_(4))包覆的钴酸锂(LiCoO_(2))正极材料,利用XRD、SEM和能量散射谱(EDS)等分析样品的晶体结构、形貌和元素组成。Li_(2)MgSiO_(4)包覆未破坏LiCoO_(2)的层状结构,且包覆层分布均匀,使电化学性能得到提升。在2.75~4.55 V充放电,包覆材料的0.10 C比容量为206.3 mAh/g;0.50 C循环50次的容量保持率为82.8%,高于未包覆材料的34.8%;4.00 C放电比容量可达0.10 C时的64%。 展开更多
关键词 锂离子电池 钴酸锂(licoo_(2)) 硅酸镁锂(Li_(2)MgSiO_(4)) 高电压 包覆
在线阅读 下载PDF
2,3-吡啶二羧酸酐用于高电压锂离子电池电解液 被引量:2
4
作者 胡大林 李枫 +1 位作者 张方畅 卢周广 《电池》 CAS 北大核心 2023年第6期591-595,共5页
将2,3-吡啶二羧酸酐(PDA)作为功能型添加剂加入电解液中,可拓宽电解液的氧化还原窗口,并先于溶剂在正负极表面形成保护膜。添加2.0%PDA后,钴酸锂/石墨全电池在85℃下存储18 h,厚度膨胀率从37.0%降低至8.4%;45℃下,以1.0 C在3.0~4.5 V循... 将2,3-吡啶二羧酸酐(PDA)作为功能型添加剂加入电解液中,可拓宽电解液的氧化还原窗口,并先于溶剂在正负极表面形成保护膜。添加2.0%PDA后,钴酸锂/石墨全电池在85℃下存储18 h,厚度膨胀率从37.0%降低至8.4%;45℃下,以1.0 C在3.0~4.5 V循环600次,容量保持率从58.3%提升至84.9%;在45℃浮充测试中,含2.0%添加剂的电池78 d后厚度膨胀率仅为9.7%。过多的PDA会导致负极阻抗显著增加,出现析锂现象。综合考虑常温和高温性能,PDA添加质量分数建议为1.0%。 展开更多
关键词 电解液 添加剂 高电压 钴酸锂(licoo_(2)) 2 3-吡啶二羧酸酐(PDA) 高温性能 锂离子电池
在线阅读 下载PDF
电池型电容器的正极结构设计与性能
5
作者 田洪松 刘富亮 +3 位作者 周雄 袁东 石斌 袁再芳 《电池》 CAS 北大核心 2024年第6期836-840,共5页
电池型电容器正极材料在涂覆干燥时,会因表面张力导致出现电极界面不稳定、极片电阻率偏大及孔隙率分布不均匀等问题。以高电压钴酸锂(LiCoO_(2))为正极材料,采用多层涂覆技术对LiCoO_(2)正极片进行厚度梯度设计。控制双层涂覆极片的总... 电池型电容器正极材料在涂覆干燥时,会因表面张力导致出现电极界面不稳定、极片电阻率偏大及孔隙率分布不均匀等问题。以高电压钴酸锂(LiCoO_(2))为正极材料,采用多层涂覆技术对LiCoO_(2)正极片进行厚度梯度设计。控制双层涂覆极片的总厚度为30μm,调节双层极片的厚度梯度分布,实现极片上下层孔隙率的差异化分布,构造Li^(+)快速传输通道,减小离子扩散阻力、减缓容量衰减。与具有各向异性和高层间距的硬碳(HC)负极组装成软包装电池型电容器,进行电化学性能测试。双层电极LH-18(第一层涂覆厚度为18μm)首次循环的库仑效率达到80.85%,比单层电极(LH-30)高6.27个百分点。在2.5~4.2 V循环,20.00 C的放电容量为1.00 C时的81.82%,1.00 C充放电100%放电深度(DOD)循环3 509次后,容量保持率仍有80%,循环次数是单层电极(LH-30)的2.27倍。 展开更多
关键词 电池型电容器 钴酸锂(licoo_(2)) 硬碳 多层涂覆
在线阅读 下载PDF
混盐电解液体系的低温性能 被引量:2
6
作者 辛娟 张丽娟 +1 位作者 李海朝 何劲作 《电池》 CAS 北大核心 2022年第6期623-626,共4页
电解液易受使用环境温度的影响。研究四氟硼酸锂(LiBF_(4))/二氟草酸硼酸锂(LiODFB)混合锂盐和四元溶剂碳酸乙烯酯(EC)/碳酸丙烯酯(PC)/碳酸甲乙酯(EMC)/乙酸乙酯(EA)(体积比1∶1∶1∶2)构成的电解液,用于钴酸锂(LiCoO_(2))锂离子电池... 电解液易受使用环境温度的影响。研究四氟硼酸锂(LiBF_(4))/二氟草酸硼酸锂(LiODFB)混合锂盐和四元溶剂碳酸乙烯酯(EC)/碳酸丙烯酯(PC)/碳酸甲乙酯(EMC)/乙酸乙酯(EA)(体积比1∶1∶1∶2)构成的电解液,用于钴酸锂(LiCoO_(2))锂离子电池时的低温(-20℃)性能。LiCoO_(2)正极在LiBF_(4)/LiODFB基电解液体系中的性能较好:在25℃时,以1.0 C在2.7~4.2 V充放电,混盐LiBF_(4)/LiODFB(物质的量比7∶3)基电解液电池的首次放电比容量为145.6 mAh/g,优于六氟磷酸锂(LiPF_(6))基电解液的129.6 mAh/g;在-20℃时,0.1 C的首次放电比容量为110.6 mAh/g,循环100次的容量保持率为89.96%,优于LiPF_(6)基电解液的83.4 mAh/g和76.16%。SEM分析表明:混盐LiBF_(4)/LiODFB(7∶3)基电解液形成一层均匀、致密的正极电解质相界面(CEI)膜,可保护电极和阻止电解液分解。 展开更多
关键词 四氟硼酸锂(LiBF_(4)) 二氟草酸硼酸锂(LiODFB) 电解液 锂离子电池 钴酸锂(licoo_(2))
在线阅读 下载PDF
FEC对不同混盐电解液体系的影响 被引量:1
7
作者 张丽娟 何劲作 +1 位作者 辛娟 闫啸 《电池》 CAS 北大核心 2023年第6期605-609,共5页
少量添加剂的使用,可以改善锂离子电池的低温性能。采用不同锂盐[四氟硼酸锂(LiBF_(4))、二氟草酸硼酸锂(LiODFB)]及添加剂[氟代碳酸乙烯酯(FEC)],与溶剂EC+PC+EMC+EA(体积比1∶1∶1∶2)构建电解液体系,对LiCoO_(2)/Li半电池进行测试,... 少量添加剂的使用,可以改善锂离子电池的低温性能。采用不同锂盐[四氟硼酸锂(LiBF_(4))、二氟草酸硼酸锂(LiODFB)]及添加剂[氟代碳酸乙烯酯(FEC)],与溶剂EC+PC+EMC+EA(体积比1∶1∶1∶2)构建电解液体系,对LiCoO_(2)/Li半电池进行测试,考察电池的首次充放电、倍率及循环性能,循环伏安(CV)曲线、电化学阻抗谱(EIS)、SEM和X射线光电子能谱(XPS)等。FEC最佳加入量为3%(质量分数)。在-20℃下,0.5 mol/L LiBF_(4)+0.5 mol/L LiODFB/PC+EC+EMC+EA+3%FEC体系组装的电池,以0.1 C在2.7~4.2 V循环50次后,放电比容量为113.5 mAh/g,容量保持率为96.34%,高于未添加FEC电解液组装的电池。添加一定量FEC,有利于提高该电解液体系电池的放电比容量及低温下的循环稳定性。 展开更多
关键词 氟代碳酸乙烯酯(FEC) 二氟草酸硼酸锂(LiODFB) 混盐 钴酸锂(licoo_(2))
在线阅读 下载PDF
高电压钴酸锂材料改性研究现状
8
作者 张继阳 郭荣荣 +1 位作者 聂贞 苏丹 《电池》 2025年第4期837-843,共7页
钴酸锂(LiCoO_(2))作为正极材料,理论比容量高(约274 mAh/g)、工作电压高(约3.7~4.2 V),且可逆性良好。在高电压下,LiCoO_(2)可能会发生不可逆的相变和层状结构崩塌,热分解释放的氧气还可能引发电池起火或爆炸,会对电池的循环寿命和安... 钴酸锂(LiCoO_(2))作为正极材料,理论比容量高(约274 mAh/g)、工作电压高(约3.7~4.2 V),且可逆性良好。在高电压下,LiCoO_(2)可能会发生不可逆的相变和层状结构崩塌,热分解释放的氧气还可能引发电池起火或爆炸,会对电池的循环寿命和安全性造成较大影响。综述近年来采用体相掺杂和表面包覆两种方法对LiCoO_(2)进行改性的研究进展,并简要介绍其他改性方法的研究成果,对高电压LiCoO_(2)材料的发展趋势进行展望。 展开更多
关键词 锂离子电池 钴酸锂(licoo_(2)) 材料改性 掺杂 表面包覆
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部