Ultrathin 2D niobium oxide dichloride(NbOCl_(2))is an emerging member of the 2D ferroelectric material family with extensive potential to provide multifunctionality in electronic devices and nanophotonics elements.It ...Ultrathin 2D niobium oxide dichloride(NbOCl_(2))is an emerging member of the 2D ferroelectric material family with extensive potential to provide multifunctionality in electronic devices and nanophotonics elements.It exhibits negligible interlayer electronic coupling and significant excitonic behavior in the bulk state.Here we substantiate that NbOCl_(2) nanosheets can be exfoliated and effectively size-selected using controlled centrifugation techniques by the liquid phase exfoliation(LPE)method.Spectroscopic measurements displayed that the variations in dispersion were highly dependent on the nanosheet dimensions.The nanosheets seemed to be comparatively defect-free which will be further corroborated by high resolution transmission electron microscopy(HRTEM)and Raman analysis.The size selected nanosheets are unanticipated stable in isopropyl alcohol(IPA),possibly owing to the protective influence of a solvation shell.Additionally,the photothermal conversion response and photothermal stability of nanosized NbOCl_(2) were investigated.Our finding revealed that NbOCl_(2) possesses a robust photothermal agent property,boasting a photothermal conversion efficiency of more than 30%.This underscores its promising potential for various photothermal applications in different fields such as photothermal therapy and thermal energy conversion.展开更多
One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm ...One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints.展开更多
In order to simulate the instability phenomenon of a nonaqueous phase liquid(NAPL) dissolution front in a computational model, the intrinsic characteristic length is commonly used to determine the length scale at whic...In order to simulate the instability phenomenon of a nonaqueous phase liquid(NAPL) dissolution front in a computational model, the intrinsic characteristic length is commonly used to determine the length scale at which the instability of the NAPL dissolution front can be initiated. This will require a huge number of finite elements if a whole NAPL dissolution system is simulated in the computational model. Even though modern supercomputers might be used to tackle this kind of NAPL dissolution problem, it can become prohibitive for commonly-used personal computers to do so. The main purpose of this work is to investigate whether or not the whole NAPL dissolution system of an annular domain can be replaced by a trapezoidal domain, so as to greatly reduce the requirements for computer efforts. The related simulation results have demonstrated that when the NAPL dissolution system under consideration is in a subcritical state, if the dissolution pattern around the entrance of an annulus domain is of interest, then a trapezoidal domain cannot be used to replace an annular domain in the computational simulation of the NAPL dissolution system.However, if the dissolution pattern away from the vicinity of the entrance of an annulus domain is of interest, then a trapezoidal domain can be used to replace an annular domain in the computational simulation of the NAPL dissolution system. When the NAPL dissolution system under consideration is in a supercritical state, a trapezoidal domain cannot be used to replace an annular domain in the computational simulation of the NAPL dissolution system.展开更多
Nanoqueous phase liquid(NAPL) simulator is a powerful and popular mathematical model for modeling the flow and transport of non-aqueous phase liquids in subsurface,but the testing of its feasibility under water table ...Nanoqueous phase liquid(NAPL) simulator is a powerful and popular mathematical model for modeling the flow and transport of non-aqueous phase liquids in subsurface,but the testing of its feasibility under water table fluctuation has received insufficient attention.The feature in a column test was tested through two cycles of water table fluctuation.The sandy medium in the column was initially saturated,and each cycle of water table fluctuation consisted of one water table falling and one rising,resulting in a drainage and an imbibition of the medium,respectively.It was found that the difference between the simulated and measured results in the first drainage of the column test was minor.However,with the propagation of the water table fluctuations,the simulation errors increased,and the simulation accuracy was not acceptable except for the first drainage in the two fluctuation cycles.The main reason was proved to be the estimation method of residual saturation used in this simulator.Also,based on the column tests,it was assumed that the resulting residual saturation from an incomplete imbibition process was a constant,with a value equal to that of the residual value resulting from the main imbibition process.The results obtained after modifying NAPL simulator with this assumption were found to be more accurate in the first cycle of water table fluctuation,but this accuracy decreased rapidly in the second one.It is concluded that NAPL simulator is not adequate in the case of LNAPL migration under water table fluctuation in sandy medium,unless a feasible assumption to estimate residual saturation is put forward.展开更多
Partial transient liquid phase (PTLP) bonding of TiC cermet to 06Cr19Ni10 stainless steel was carried out. Impulse pressuring was used to reduce the bonding time, and a Ti/Cu/Nb interlayer was employed to alleviate ...Partial transient liquid phase (PTLP) bonding of TiC cermet to 06Cr19Ni10 stainless steel was carried out. Impulse pressuring was used to reduce the bonding time, and a Ti/Cu/Nb interlayer was employed to alleviate the detrimental effect of interfacial reaction products on the bonding strength. Successful bonding was achieved at 885℃ under a pulsed pressure of 2-10 MPa within durations in the range of 2-8 min, which was notably shortened in comparison with conventional PTLP bonding. Microstructure characterization revealed the o- phase with a limit solubility of Nb, a sequence of Ti-Cu intermetallic phases and solid solutions of Ni and Cu in α+β Ti in the reaction zone. The maximum shear strength of 106.7 MPa was obtained when the joint was bonded for 5 rain, indicating that a robust metallurgical bonding was achieved. Upon shear loading, the joints fractured along the Ti-Cu intermetallics interface and spread to the interior of TiC cermet in a brittle cleavage manner.展开更多
Insulation is one of the most important parts in a high voltage equipment.There are gaseous,liquid and solid insulations which are commonly used.In a high voltage transformer for example the insulating materials are a...Insulation is one of the most important parts in a high voltage equipment.There are gaseous,liquid and solid insulations which are commonly used.In a high voltage transformer for example the insulating materials are all used.During operation of a high voltage equipment high electric stress may occur.Under extreme condition failure of the insulation may take place.Excessive electric field in air may cause corona discharges while in liquid insulation discharges may take place in the form of streamer.This paper reports experimental results on the corona and streamer discharges in air and silicone oil.The discharges were artificially generated around a needle tip in a needle-plane electrode system with gap length of 4 mm under sinusoidal and triangular voltages.The needle was made of steel with tip radius of 3 μm and curvature angle of 30°.The needle was made by Ogura Jewelry.The discharge pulses were measured using personal-computer based partial discharge(PD)measurement system with sensitivity of better than 0.5 pC.The system is able to measure discharge in time sequential.Phase-resolved analysis of the discharges was done to interpret the physical processes behind the discharges.The experimental results showed that corona discharges took place at negative half cycles.The discharges were concentrated around 270° of phase angle of applied voltage.The discharge magnitude and discharge number of corona clearly dependent on the instantaneous of applied voltage.These were strongly supported by the application of triangular voltage.Streamer discharges occurred at both positive and negative half cycles.The discharges pulses concentrated around the peak of applied voltage at phase angle of 90° and 270°.Experimental results under sinusoidal and triangular voltages revealed that streamer discharge magnitude as well as probability of occurrence was strongly dependent on the instantaneous applied voltage.展开更多
Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and su...Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and sulfur capacity of the composite solution was about 3 g/L.The results show that purification efficiency was affected by catalyst addition,pH,experimental temperature,and sulfur capacity.The parameters effects on catalytic oxidation were studied,and the optimized conditions were that Fe3+ concentration 0.08 mg/L,reaction temperature 70°C,pH 9.0,with a absorption solution volume of 50 mL,a gas flow rate 200 mL/min,and H2S mass concentration of 1.58-2.02 mg/m3.展开更多
The synthesis of dipeptide AcPheLeuNH2 catalyzed by immobilized pancreatic lipase was carried out in a two- liquid-phase hollow-fiber membrane reactor, operated in a batch mode. Kinetic properties of free and immobili...The synthesis of dipeptide AcPheLeuNH2 catalyzed by immobilized pancreatic lipase was carried out in a two- liquid-phase hollow-fiber membrane reactor, operated in a batch mode. Kinetic properties of free and immobilized enzyme, partition behavior between aqueous buffer phase and organic solvent phase, and effective diffusion coefficients of substrates and products through the membrane were investigated respectively. Based on the preliminary experimental results, the performance of the enzyme membrane reactor, which is evaluated by the purity and the yield, is discussed.展开更多
Modern porous monoliths have been conceived as a new class of stationary phases for high performance liquid chromatography(HPLC) in classical columns in the early 1990s and later extended to the capillary format.These...Modern porous monoliths have been conceived as a new class of stationary phases for high performance liquid chromatography(HPLC) in classical columns in the early 1990s and later extended to the capillary format.These monolithic materials are prepared using simple processes carried out in an external mold(inorganic monoliths) or within the confines of the column(organic monoliths and all capillary columns).These methods afford macroporous materials with large through-pores that enable applications in a rapid flow-through mode.Since all the mobile phase must flow through the monolith,the convection considerably accelerates mass transport within the monolithic separation medium and improves the separations.As a result,the monolithic columns perform well even at very high flow rates.The applications of monolithic capillary columns are demonstrated on numerous separations in the HPLC mode.展开更多
基金Projects(62275275,11904239)supported by the National Natural Science Foundation of ChinaProjects(2021JJ40709,2022JJ20080)supported by the Natural Science Foundation of Hunan Province,China。
文摘Ultrathin 2D niobium oxide dichloride(NbOCl_(2))is an emerging member of the 2D ferroelectric material family with extensive potential to provide multifunctionality in electronic devices and nanophotonics elements.It exhibits negligible interlayer electronic coupling and significant excitonic behavior in the bulk state.Here we substantiate that NbOCl_(2) nanosheets can be exfoliated and effectively size-selected using controlled centrifugation techniques by the liquid phase exfoliation(LPE)method.Spectroscopic measurements displayed that the variations in dispersion were highly dependent on the nanosheet dimensions.The nanosheets seemed to be comparatively defect-free which will be further corroborated by high resolution transmission electron microscopy(HRTEM)and Raman analysis.The size selected nanosheets are unanticipated stable in isopropyl alcohol(IPA),possibly owing to the protective influence of a solvation shell.Additionally,the photothermal conversion response and photothermal stability of nanosized NbOCl_(2) were investigated.Our finding revealed that NbOCl_(2) possesses a robust photothermal agent property,boasting a photothermal conversion efficiency of more than 30%.This underscores its promising potential for various photothermal applications in different fields such as photothermal therapy and thermal energy conversion.
文摘One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints.
基金Project(11272359)supported by the National Natural Science Foundation of China
文摘In order to simulate the instability phenomenon of a nonaqueous phase liquid(NAPL) dissolution front in a computational model, the intrinsic characteristic length is commonly used to determine the length scale at which the instability of the NAPL dissolution front can be initiated. This will require a huge number of finite elements if a whole NAPL dissolution system is simulated in the computational model. Even though modern supercomputers might be used to tackle this kind of NAPL dissolution problem, it can become prohibitive for commonly-used personal computers to do so. The main purpose of this work is to investigate whether or not the whole NAPL dissolution system of an annular domain can be replaced by a trapezoidal domain, so as to greatly reduce the requirements for computer efforts. The related simulation results have demonstrated that when the NAPL dissolution system under consideration is in a subcritical state, if the dissolution pattern around the entrance of an annulus domain is of interest, then a trapezoidal domain cannot be used to replace an annular domain in the computational simulation of the NAPL dissolution system.However, if the dissolution pattern away from the vicinity of the entrance of an annulus domain is of interest, then a trapezoidal domain can be used to replace an annular domain in the computational simulation of the NAPL dissolution system. When the NAPL dissolution system under consideration is in a supercritical state, a trapezoidal domain cannot be used to replace an annular domain in the computational simulation of the NAPL dissolution system.
基金Project(41072182)supported by the National Natural Science Foundation of ChinaProject(2010Z1-E101)supported by Science and Technology Program of Guangzhou City,China+1 种基金Project(20100103)supported by Science and Technology Program of Daya Bay,Huizhou City,ChinaProject(2012A030700008)supported by the Science and Technology Planning Program of Guangdong Province,China
文摘Nanoqueous phase liquid(NAPL) simulator is a powerful and popular mathematical model for modeling the flow and transport of non-aqueous phase liquids in subsurface,but the testing of its feasibility under water table fluctuation has received insufficient attention.The feature in a column test was tested through two cycles of water table fluctuation.The sandy medium in the column was initially saturated,and each cycle of water table fluctuation consisted of one water table falling and one rising,resulting in a drainage and an imbibition of the medium,respectively.It was found that the difference between the simulated and measured results in the first drainage of the column test was minor.However,with the propagation of the water table fluctuations,the simulation errors increased,and the simulation accuracy was not acceptable except for the first drainage in the two fluctuation cycles.The main reason was proved to be the estimation method of residual saturation used in this simulator.Also,based on the column tests,it was assumed that the resulting residual saturation from an incomplete imbibition process was a constant,with a value equal to that of the residual value resulting from the main imbibition process.The results obtained after modifying NAPL simulator with this assumption were found to be more accurate in the first cycle of water table fluctuation,but this accuracy decreased rapidly in the second one.It is concluded that NAPL simulator is not adequate in the case of LNAPL migration under water table fluctuation in sandy medium,unless a feasible assumption to estimate residual saturation is put forward.
基金Project(51421001)supported by the National Natural Science Foundation of ChinaProjects(106112015CDJXZ138803,106112015CDJXY130003)supported by the Fundamental Research Funds for the Central Universities,China
文摘Partial transient liquid phase (PTLP) bonding of TiC cermet to 06Cr19Ni10 stainless steel was carried out. Impulse pressuring was used to reduce the bonding time, and a Ti/Cu/Nb interlayer was employed to alleviate the detrimental effect of interfacial reaction products on the bonding strength. Successful bonding was achieved at 885℃ under a pulsed pressure of 2-10 MPa within durations in the range of 2-8 min, which was notably shortened in comparison with conventional PTLP bonding. Microstructure characterization revealed the o- phase with a limit solubility of Nb, a sequence of Ti-Cu intermetallic phases and solid solutions of Ni and Cu in α+β Ti in the reaction zone. The maximum shear strength of 106.7 MPa was obtained when the joint was bonded for 5 rain, indicating that a robust metallurgical bonding was achieved. Upon shear loading, the joints fractured along the Ti-Cu intermetallics interface and spread to the interior of TiC cermet in a brittle cleavage manner.
文摘Insulation is one of the most important parts in a high voltage equipment.There are gaseous,liquid and solid insulations which are commonly used.In a high voltage transformer for example the insulating materials are all used.During operation of a high voltage equipment high electric stress may occur.Under extreme condition failure of the insulation may take place.Excessive electric field in air may cause corona discharges while in liquid insulation discharges may take place in the form of streamer.This paper reports experimental results on the corona and streamer discharges in air and silicone oil.The discharges were artificially generated around a needle tip in a needle-plane electrode system with gap length of 4 mm under sinusoidal and triangular voltages.The needle was made of steel with tip radius of 3 μm and curvature angle of 30°.The needle was made by Ogura Jewelry.The discharge pulses were measured using personal-computer based partial discharge(PD)measurement system with sensitivity of better than 0.5 pC.The system is able to measure discharge in time sequential.Phase-resolved analysis of the discharges was done to interpret the physical processes behind the discharges.The experimental results showed that corona discharges took place at negative half cycles.The discharges were concentrated around 270° of phase angle of applied voltage.The discharge magnitude and discharge number of corona clearly dependent on the instantaneous of applied voltage.These were strongly supported by the application of triangular voltage.Streamer discharges occurred at both positive and negative half cycles.The discharges pulses concentrated around the peak of applied voltage at phase angle of 90° and 270°.Experimental results under sinusoidal and triangular voltages revealed that streamer discharge magnitude as well as probability of occurrence was strongly dependent on the instantaneous applied voltage.
基金Project(2008ZX07105-002) supported by the Erhai Lake Project of National Science and Technology Major Project in the 11th Five years Plan of China
文摘Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and sulfur capacity of the composite solution was about 3 g/L.The results show that purification efficiency was affected by catalyst addition,pH,experimental temperature,and sulfur capacity.The parameters effects on catalytic oxidation were studied,and the optimized conditions were that Fe3+ concentration 0.08 mg/L,reaction temperature 70°C,pH 9.0,with a absorption solution volume of 50 mL,a gas flow rate 200 mL/min,and H2S mass concentration of 1.58-2.02 mg/m3.
基金Supported by the National Natural Science Foundation of China andExtraction Separation branch of United Chemical Engineeing
文摘The synthesis of dipeptide AcPheLeuNH2 catalyzed by immobilized pancreatic lipase was carried out in a two- liquid-phase hollow-fiber membrane reactor, operated in a batch mode. Kinetic properties of free and immobilized enzyme, partition behavior between aqueous buffer phase and organic solvent phase, and effective diffusion coefficients of substrates and products through the membrane were investigated respectively. Based on the preliminary experimental results, the performance of the enzyme membrane reactor, which is evaluated by the purity and the yield, is discussed.
基金Supported by grants of the National Institute of General Medical Sciences,National Institutes of Health(GM-48364),and the Materials Sciences and Engineering Division of the U.S.Department of Energy(DE-AC02-05CH11231).
文摘Modern porous monoliths have been conceived as a new class of stationary phases for high performance liquid chromatography(HPLC) in classical columns in the early 1990s and later extended to the capillary format.These monolithic materials are prepared using simple processes carried out in an external mold(inorganic monoliths) or within the confines of the column(organic monoliths and all capillary columns).These methods afford macroporous materials with large through-pores that enable applications in a rapid flow-through mode.Since all the mobile phase must flow through the monolith,the convection considerably accelerates mass transport within the monolithic separation medium and improves the separations.As a result,the monolithic columns perform well even at very high flow rates.The applications of monolithic capillary columns are demonstrated on numerous separations in the HPLC mode.