期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Predictor-corrector interior-point algorithm for linearly constrained convex programming
1
作者 LIANG Xi-ming (College of Information Science & Engineering, Central South University, Changsh a 410083, China) 《Journal of Central South University》 SCIE EI CAS 2001年第3期208-212,共5页
Active set method and gradient projection method are curre nt ly the main approaches for linearly constrained convex programming. Interior-po int method is one of the most effective choices for linear programming. In ... Active set method and gradient projection method are curre nt ly the main approaches for linearly constrained convex programming. Interior-po int method is one of the most effective choices for linear programming. In the p aper a predictor-corrector interior-point algorithm for linearly constrained c onvex programming under the predictor-corrector motivation was proposed. In eac h iteration, the algorithm first performs a predictor-step to reduce the dualit y gap and then a corrector-step to keep the points close to the central traject ory. Computations in the algorithm only require that the initial iterate be nonn egative while feasibility or strict feasibility is not required. It is proved th at the algorithm is equivalent to a level-1 perturbed composite Newton method. Numerical experiments on twenty-six standard test problems are made. The result s show that the proposed algorithm is stable and robust. 展开更多
关键词 linearly constrained convex programming PREDICTOR corrector interior point algorithm numerical experiment
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部