期刊文献+
共找到11,015篇文章
< 1 2 250 >
每页显示 20 50 100
Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic metasurface 被引量:1
1
作者 Bao-Qin Lin Jian-Xin Guo +3 位作者 Bai-Gang Huang Lin-Bo Fang Peng Chu Xiang-Wen Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期227-233,共7页
We propose a metasurface which consists of three conductive layers separated by two dielectric layers. Each conductive layer consists of a square array of square loop apertures, however, a pair of corners of each squa... We propose a metasurface which consists of three conductive layers separated by two dielectric layers. Each conductive layer consists of a square array of square loop apertures, however, a pair of corners of each square metal patch surrounded by the square loop apertures have been truncated, so it becomes an orthotropic structure with a pair of mutually perpendicular symmetric axes u and v. The simulated results show that the metasurface can be used as a wideband transmission-type polarization converter to realize linear-to-circular polarization conversion in the frequency range from12.21 GHz to 18.39 GHz, which is corresponding to a 40.4% fractional bandwidth. Moreover, its transmission coefficients at x-and y-polarized incidences are completely equal. We have analyzed the cause of the polarization conversion, and derived several formulas which can be used to calculate the magnitudes of cross-and co-polarization transmission coefficients at y-polarized incidence, together with the phase difference between them, based on the two independent transmission coefficients at u-and v-polarized incidences. Finally, one experiment was carried out, and the experiment and simulated results are in good agreement with each other. 展开更多
关键词 polarization converter metasurface circular polarization
在线阅读 下载PDF
Ultra-wideband linear-to-circular polarization conversion metasurface
2
作者 Bao-Qin Lin Lin-Tao Lv +3 位作者 Jian-Xin Guo Zu-Liang Wang Shi-Qi Huang Yan-Wen Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期261-267,共7页
An ultra-wideband and high-efficiency reflective linear-to-circular polarization conversion metasurface is proposed. The proposed metasurface is composed of a square array of a corner-truncated square patch printed on... An ultra-wideband and high-efficiency reflective linear-to-circular polarization conversion metasurface is proposed. The proposed metasurface is composed of a square array of a corner-truncated square patch printed on grounded dielectric substrate and covered with a dielectric layer, which is an orthotropic anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along the directions with the tilt angles of ±45° with respect to the vertical y axis. When the u- and v-polarized waves are incident on the proposed metasurface, the phase difference between the two reflection coefficients is close to –90° in an ultra-wide frequency band, so it can realize high-efficiency and ultra-wideband LTC polarization conversion under both x- and y-polarized incidences in this band. The proposed polarization conversion metasurface is simulated and measured. Both the simulated and measured results show that the axial ratio (AR) of the reflected wave is kept below 3 dB in the ultra-wide frequency band of 5.87 GHz–21.13 GHz, which is corresponding to a relative bandwidth of 113%;moreover, the polarization conversion rate (PCR) can be kept larger than 99% in a frequency range of 8.08 GHz–20.92 GHz. 展开更多
关键词 metasurface polarization conversion circular polarization
在线阅读 下载PDF
A linear-to-circular polarization converter based on I-shaped circular frequency selective surfaces
3
作者 吴家梁 林宝勤 +1 位作者 达新宇 吴凯 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期184-189,共6页
In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on Ishaped circular structure resonant is presented and investigated. Numerical simulations exhibit that... In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on Ishaped circular structure resonant is presented and investigated. Numerical simulations exhibit that when the normal ypolarized waves impinge on this device propagating towards +z direction, the two orthogonal components of the transmitted waves have a 90° phase difference as well as the nearly equal amplitudes at the resonant frequency of 7.04 GHz, which means that the left-hand circular polarization is realized in transmission. For validating the proposed design, a prototype which consists of 25 × 25 elements has been designed, manufactured and measured. The measured results are in good agreement with the simulated ones, showing that the polarization conversion transmission is over-3 dB in the frequency range of 5.22–8.08 GHz and the axial ratio is below 3 dB from 5.86 GHz to 7.34 GHz. 展开更多
关键词 polarization converter metasurface frequency selective surface
在线阅读 下载PDF
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
4
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides polarization coupling Electromagnetic wave absorption
在线阅读 下载PDF
Integration of Electrical Properties and Polarization Loss Modulation on Atomic Fe–N‑RGO for Boosting Electromagnetic Wave Absorption
5
作者 Kaili Zhang Yuefeng Yan +4 位作者 Zhen Wang Guansheng Ma Dechang Jia Xiaoxiao Huang Yu Zhou 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期517-532,共16页
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ... Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism. 展开更多
关键词 Electromagnetic wave absorption Fe-N-RGO Dipole polarization Conduction loss Impedance matching
在线阅读 下载PDF
Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers
6
作者 Feng He Sitong Chen +3 位作者 Ruili Zhou Hanyu Diao Yangyang Han Xiaodong Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期361-377,共17页
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c... Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins. 展开更多
关键词 Passive tactile sensors Reversible polarization of conjugated polymers Tactile perception Machine learning algorithm Object recognition
在线阅读 下载PDF
Merging and separation of polarization singularities in complex lattices
7
作者 Mengyao Wang Tian Shi +3 位作者 Luhui Ning Peng Liu Liangsheng Li Ning Zheng 《Chinese Physics B》 2025年第3期512-519,共8页
The evolution in momentum space of bound states in the continuum(BICs)and circularly polarized states(CPSs)—as far-field polarization singularities—can be observed by controlling the geometric parameters of photonic... The evolution in momentum space of bound states in the continuum(BICs)and circularly polarized states(CPSs)—as far-field polarization singularities—can be observed by controlling the geometric parameters of photonic crystals.This offers significant potential in optics and photonics.Here,we reveal that in complex lattices far-field polarization singularities can be flexibly manipulated while preserving structural symmetry.A change in topological charge for the at-ΓBIC can generate new BICs or CPSs.At an off-Γpoint,a BIC can spawn from the collision of two CPSs.As the thickness of the structure increases,this BIC will meet the at-ΓBIC.The merging of BICs can induce topological charge transition and yield a large wavevector space around theΓpoint with ultra-high quality(Q)factors.Our findings provide a novel degree of freedom for manipulating polarization singularities,which holds great promise in radiation modulation and singular optics. 展开更多
关键词 bound states in the continuum circularly polarized states topological charge far-field polarization photonic crystals
在线阅读 下载PDF
Correction:Defects-Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
8
作者 Jiaolong Liu Siyu Zhang +11 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 2025年第4期290-290,共1页
Correction to:Nano-Micro Lett.(2025)17:24 https://doi.org/10.1007/s40820-024-01515-0 Following publication of the original article[1],the authors reported the author list needed to be updated because the last three au... Correction to:Nano-Micro Lett.(2025)17:24 https://doi.org/10.1007/s40820-024-01515-0 Following publication of the original article[1],the authors reported the author list needed to be updated because the last three author names were duplicated.The correct author list has been provided in this Correction.The original article[1]has been corrected. 展开更多
关键词 STRONG polarization Defects
在线阅读 下载PDF
Spontaneous increasing of sensitivity and resolution in parahydrogen-induced hyperpolarization by RASER
9
作者 Zeyu Zheng Qiwei Peng +2 位作者 Huijun Sun Xinchang Wang Zhong Chen 《Magnetic Resonance Letters》 2025年第1期1-11,共11页
Enhancing the sensitivity of nuclear magnetic resonance(NMR)technology has been the focus of NMR research for decades,which offers the potential to significantly expand its applications in chemistry,biology,and medica... Enhancing the sensitivity of nuclear magnetic resonance(NMR)technology has been the focus of NMR research for decades,which offers the potential to significantly expand its applications in chemistry,biology,and medical imaging.Parahydrogen-induced polarization(PHIP)emerges as a cost-effective approach to substantially enhance the sensitivity of NMR.Nevertheless,the amplification of the ^(1)H signal in PHIP is susceptible to interference from the thermal polarization state ^(1)H NMR signal.Employing RASER(radiofrequency amplification by stimulated emission of radiation)proves effective in mitigating such interference,which can reduce the linewidth and increase the sensitivity at the same time.In this work,we utilized PHIP and RASER to enhance the signal-to-noise ratio(SNR)of a series of biocompatible alkynyl organic acid molecules.The alkynyl acid with the highest enhancement factor was first identified through PASADENA(parahydrogen and synthesis allow dramatically enhanced nuclear alignment)experiments.Subsequently,RASER experiments were carried out through hyperpolarization of 5-hexynoic acid,exploring its signal characteristics under varying flow rates and pressures.The SNR of proton signals of 5-hexynoic acid surpassed 150,000,an 18.62-fold improvement compared with traditional hyperpolarized signals in PASADENA,and a markedly narrowed linewidth of 0.06 Hz. 展开更多
关键词 Nuclear magnetic resonance Parahydrogen-induced polarization PASADENA RASER Alkynyl acid
在线阅读 下载PDF
Rational modulation of fluorophosphate cathode by anionic groups to reduce the polarization behavior for fast-charging sodium-ion batteries
10
作者 Xinyuan Wang Fan Zhang +5 位作者 Xingyu Zhou Qian Wang Changyu Liu Yangyang Liu Hui Wang Xiaojie Liu 《Journal of Energy Chemistry》 2025年第1期509-521,共13页
Na_(3)V_(2)(PO_(4))_(2)O_(2)F (VP) is recognized as a promising cathode material for sodium-ion batteries due to its stable structural framework and high specific capacity.Density functional theory (DFT) and finite el... Na_(3)V_(2)(PO_(4))_(2)O_(2)F (VP) is recognized as a promising cathode material for sodium-ion batteries due to its stable structural framework and high specific capacity.Density functional theory (DFT) and finite element simulations show that incorporating SO_(4)^(2-)into VP decreases its band gap,lowers the migration energy barrier,and ensures a uniform Na+concentration gradient and stress distribution during charge and discharge cycles.Consequently,the average Na+diffusion coefficient of Na_(3)V_(2)(PO_(4))_(1.95)(SO_(4))_(0.05)O_(2)F(VPS-1) is roughly double that of VP,leading to enhanced rate capability (80 C,75.5 mAh g^(-1)) and cycling stability (111.0 mAh g^(-1)capacity after 1000 cycles at 10 C current density) for VPS-1.VPS-1 exhibits outstanding fast-charging capabilities,achieving an 80%state of charge in just 8.1 min.The assembled VPS-1//SbSn/NPC full cell demonstrated stable cycling over 200 cycles at a high 5 C current,maintaining an average coulombic efficiency of 95.35%. 展开更多
关键词 Anionic group modulation polarization behavior Fast-charging Sodium-ion battery Fluorophosphate Cathode
在线阅读 下载PDF
Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces 被引量:4
11
作者 Tong Nan Huan Zhao +3 位作者 Jinying Guo Xinke Wang Hao Tian Yan Zhang 《Opto-Electronic Science》 2024年第5期1-11,共11页
Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajec... Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging. 展开更多
关键词 structured light beam tri-layer metallic metasurface longitudinal polarization non-axial transmission
在线阅读 下载PDF
Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator 被引量:1
12
作者 Yuqiang Ding Zhenyi Luo +1 位作者 Garimagai Borjigin Shin-Tson Wu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第3期4-14,共11页
A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads t... A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads to a significant optical loss.The theoretical maximum optical efficiency is merely 25%.To transcend this optical efficiency constraint while retaining the foldable characteristic inherent to traditional pancake optics,in this paper,we propose a theoretically lossless folded optical system to replace the HM with a nonreciprocal polarization rotator.In our feasibility demonstration experiment,we used a commercial Faraday rotator(FR)and reflective polarizers to replace the lossy HM.The theoretically predicted 100%efficiency can be achieved approximately by using two high-extinction-ratio reflective polarizers.In addition,we evaluated the ghost images using a micro-OLED panel in our imaging system.Indeed,the ghost images can be suppressed to undetectable level if the optics are with antireflection coating.Our novel pancake optical system holds great potential for revolutionizing next-generation VR displays with lightweight,compact formfactor,and low power consumption. 展开更多
关键词 near-eye display virtual reality pancake optics folded optics nonreciprocal polarization rotator
在线阅读 下载PDF
Manipulating polarization attenuation in NbS_(2)-NiS_(2)nanoflowers through homogeneous heterophase interface engineering toward microwave absorption with shifted frequency bands 被引量:1
13
作者 Yiru Fu Yuping Wang +6 位作者 Junye Cheng Yao Li Jing Wang Yongheng Jin Deqing Zhang Guangping Zheng Maosheng Cao 《Nano Materials Science》 CSCD 2024年第6期794-804,共11页
Homogeneous heterogeneous(heterophase)interfaces regulated with low energy barriers have a fast response to applied electric fields and could provide a unique interfacial polarization,which facilitate the transport of... Homogeneous heterogeneous(heterophase)interfaces regulated with low energy barriers have a fast response to applied electric fields and could provide a unique interfacial polarization,which facilitate the transport of electrons across the substrate.Such regulation on the interfaces is effective in modulating electromagnetic wave absorbing materials.Herein,we construct NbS_(2)–NiS_(2)heterostructures with NiS_(2)nanoparticles uniformly grown in NbS_(2)hollow nanospheres,and such particular structure enhances the interfacial polarization.The strong electron transfer at the interface promotes electron transport throughout the material,which results in less scattering,promotes conduct ion loss and dielectric polarization relaxation,improves dielectric loss,and results in a good impedance matching of the material.Consequently,the absorbing band may be successful tuned.By regulating the amount of NiS_(2),the heterogeneous interface is finely alternated so that the overall wave-absorbing performance is shifted to lower frequencies.With a NiS_(2)content of 15 wt%and an absorber thickness of 1.84 mm,the minimum reflection loss at 14.56 GHz is53.1 dB,and the effective absorption bandwidth is 5.04 GHz;more importantly,the minimum reflection loss in different bands is20 dB,and the microwave energy absorption rate reaches 99%when the thickness is about 1.5–4.5 mm.This work demonstrates the construction of homogeneous heterostructures is effective in improving the electromagnetic absorption properties,providing guideline for the synthesis of highly efficient electromagnetic absorbing materials. 展开更多
关键词 Interface engineering Electromagnetic wave absorption HETEROSTRUCTURES Interfacial polarization
在线阅读 下载PDF
自适应Polar码快速译码优化设计
14
作者 舒冰心 雷菁 +2 位作者 鲁信金 刘哲铭 程江华 《无线电通信技术》 北大核心 2025年第1期124-130,共7页
众所周知,快速循环冗余校验辅助的串行抵消列表(Fast Cyclic Redundancy Check-Aided Successive Cancellation List,Fast CA-SCL)译码算法是通过比特分类来实现快速译码功能。针对其算法复杂度高、时延大等问题,提出一种自适应列表Fast... 众所周知,快速循环冗余校验辅助的串行抵消列表(Fast Cyclic Redundancy Check-Aided Successive Cancellation List,Fast CA-SCL)译码算法是通过比特分类来实现快速译码功能。针对其算法复杂度高、时延大等问题,提出一种自适应列表Fast CA-SCL(Adaptive List Fast CA-SCL,ALF-CA-SCL)算法优化设计,提出对应的硬件架构设计方案加以验证。该算法通过灵活改变列表长度优化策略,保证译码的可靠性,降低译码复杂度和传输时延。仿真结果表明,误码性能相当时,与Fast CA-SCL算法相比,所提算法使得系统效率提高了5.45倍。 展开更多
关键词 polar 快速译码 自适应列表Fast CA-SCL译码 硬件实现
在线阅读 下载PDF
面向特殊节点的低延时Polar码构造研究
15
作者 符川东 赵明敏 +2 位作者 李荣鹏 李旻 赵民建 《移动通信》 2025年第2期43-50,共8页
现有的Polar码构造研究主要集中在提升码序列的译码性能方面。然而,在基于特殊节点的快速译码器当中,码序列不仅影响译码性能,还通过决定特殊节点的分布影响译码时延。基于此,提出一种低时延码构造方案,通过优化特殊节点分布的方式降低... 现有的Polar码构造研究主要集中在提升码序列的译码性能方面。然而,在基于特殊节点的快速译码器当中,码序列不仅影响译码性能,还通过决定特殊节点的分布影响译码时延。基于此,提出一种低时延码构造方案,通过优化特殊节点分布的方式降低快速译码器的译码时延。所提出的方案基于遗传算法,采用了分步优化策略:先提升码序列的译码性能,再优化特殊节点分布以降低译码时延。仿真结果表明,与现有码序列相比,通过低时延码构造方案获得的码序列译码性能不退化,并且译码时延有了最大50%的降低。 展开更多
关键词 polar 码构造 特殊节点 低时延 遗传算法
在线阅读 下载PDF
Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
16
作者 朱万里 甄伟立 +5 位作者 牛瑞 焦珂珂 岳智来 胡慧杰 薛飞 张昌锦 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期532-539,共8页
Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quas... Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr_(2) by using combined measurements of the angle-resolved polarized Raman spectroscopy(ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr_(2) flake.And anisotropic optical absorption spectrum of PdBr_(2) nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr_(2) nanowire exhibits high responsivity of 747 A·W^(-1) and specific detectivity of 5.8×10^(12) Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr_(2), establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications. 展开更多
关键词 linear dichroism reversal polarization sensitivity ANISOTROPY polarized photodetector
在线阅读 下载PDF
High-Power Raman Soliton Generation at 1.7 μm in All-Fiber Polarization-Maintaining Erbium-Doped Amplifier
17
作者 徐子鹏 王萱 +2 位作者 姚传飞 杨林京 李平雪 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期35-39,共5页
An all-fiber polarization maintaining high-power laser system operating at 1.7 μm based on the Ramaninduced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbiumdope... An all-fiber polarization maintaining high-power laser system operating at 1.7 μm based on the Ramaninduced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbiumdoped oscillator and two-stage amplifiers with polarization maintaining commercial silica fibers and devices, which can provide robust and stable soliton generation. High-power soliton laser with the average power of 0.28 W,the repetition rate of 42.7 MHz, and pulse duration of 515 fs is generated directly from the main amplifier.Our experiment provides a feasible method for high-power all-fiber polarization maintaining femtosecond laser generation working at 1.7 μm. 展开更多
关键词 polarization fiber AMPLIFIER
在线阅读 下载PDF
Orthogonal matrix of polarization combinations:concept and application to multichannel holographic recording
18
作者 Shujun Zheng Jiaren Tan +4 位作者 Hongjie Liu Xiao Lin Yusuke Saita Takanori Nomura Xiaodi Tan 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第10期4-13,共10页
Orthogonal matrices have become a vital means for coding and signal processing owing to their unique distributional properties.Although orthogonal matrices based on amplitude or phase combinations have been extensivel... Orthogonal matrices have become a vital means for coding and signal processing owing to their unique distributional properties.Although orthogonal matrices based on amplitude or phase combinations have been extensively explored,the orthogonal matrix of polarization combinations(OMPC)is a novel,relatively unexplored concept.Herein,we propose a method for constructing OMPCs of any dimension encompassing 4n(where n is 1,2,4,8,…)mutually orthogonal 2ncomponent polarization combinations.In the field of holography,the integration of polarization multiplexing techniques with polarization-sensitive materials is expected to emerge as a groundbreaking approach for multichannel hologram multiplexing,offering considerable enhancements in data storage capacity and security.A multidimensional OMPC enables the realization of multichannel multiplexing and dynamical modulation of information in polarization holographic recording.Despite consolidating all information into a single position within the material,we effectively avoided extraneous crosstalk during the reconstruction process.Our results show that achieving four distinct holographic images individually and simultaneously depends on the polarization combination represented by the incident wave.This discovery opens up a new avenue for achieving highly holographic information storage and dynamically displayed information,harnessing the potential of OMPC to expand the heretofore limited dimensionality of orthogonal polarization. 展开更多
关键词 orthogonal matrix of polarization combinations polarization-modulated multiplexing multichannel recording polarization holography dynamical information modulation
在线阅读 下载PDF
Tunneling Barrier Thickness Dependence of Spin Polarization of Ferromagnet in Magnetic Tunnel Junctions
19
作者 Yu-Qing Zhao Hai-Yan Zuo +5 位作者 Shao-Wei Li Ke Xia Ming Wen Jun-Mei Guo Peng Xiong Cong Ren 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第11期93-98,共6页
For designing low-impedance magnetic tunnel junctions(MTJs),it has been found that tunneling magnetoresistance strongly correlates with the insulating barrier thickness,imposing a fundamental problem about the relatio... For designing low-impedance magnetic tunnel junctions(MTJs),it has been found that tunneling magnetoresistance strongly correlates with the insulating barrier thickness,imposing a fundamental problem about the relationship between spin polarization of ferromagnet and the insulating barrier thickness in MTJs.Here,we investigate the influence of alumina barrier thickness on tunneling spin polarization(TSP)through a combination of theoretical calculations and experimental verification.Our simulating results reveal a significant impact of barrier thickness on TSP,exhibiting an oscillating decay of TSP with the barrier layer thinning.Experimental verification is realized on FeNi/AlO_(x)/Al superconducting tunnel junctions to directly probe the spin polarization of FeNi ferromagnet using Zeeman-split tunneling spectroscopy technique.These findings provide valuable insights for designs of high-performance spintronic devices,particularly in applications such as magnetic random access memories,where precise control over the insulating barrier layer is crucial. 展开更多
关键词 TECHNIQUE TUNNELING polarization
在线阅读 下载PDF
Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization
20
作者 Ya-Jie Zhang Chao-Long Li +3 位作者 Jia-Qi Luan Ming Zhao Ding-Shan Gao Pei-Li Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期287-294,共8页
Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the m... Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields. 展开更多
关键词 metasurface polarization conversion topology optimization ULTRA-BROADBAND
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部