针对X-Y平台中模型误差和扰动未知等问题,本文以夹胶玻璃自动切膜为应用背景,设计自动切膜恒力控制系统,并对系统中的交互力进行分析与建模。提出了一种改进线性自抗扰(linear active disturbance rejection controller,LADRC)力控制器...针对X-Y平台中模型误差和扰动未知等问题,本文以夹胶玻璃自动切膜为应用背景,设计自动切膜恒力控制系统,并对系统中的交互力进行分析与建模。提出了一种改进线性自抗扰(linear active disturbance rejection controller,LADRC)力控制器,将滑模控制嵌入到基于预报的线性跟踪微分器(tracking differentiator,TD)中,平衡滤波与相位滞后间的矛盾,利用分数阶比例微分(fractional order proportion differentiation,FOPD)快速响应跟踪力误差,并通过Lyapunov函数对改进线性跟踪微分器进行稳定性证明。通过与线性自抗扰进行比较,对所设计的控制器进行了仿真分析与实验验证。实验结果表明,当玻璃位置等参数发生变化时,基于改进跟踪微分器的线性自抗扰控制系统仍能较好地实现对切刀的交互力控制,有效保证切膜效果,证明了提出方法的有效性与实用性。展开更多
四旋翼无人机系统具有参数不确定性及强耦合性的特点,其飞行性能容易受到外部干扰而下降.为了保证四旋翼无人机飞行的稳定性,本文提出了一种基于改进线性扩张状态观测器(Linear Extended State Observer,LESO)的模糊线性自抗扰控制方法...四旋翼无人机系统具有参数不确定性及强耦合性的特点,其飞行性能容易受到外部干扰而下降.为了保证四旋翼无人机飞行的稳定性,本文提出了一种基于改进线性扩张状态观测器(Linear Extended State Observer,LESO)的模糊线性自抗扰控制方法.通过模糊算法自适应调节线性自抗扰控制器的参数,基于Levant跟踪微分器跟踪四旋翼无人机位置及姿态角的二阶微分信号进而提取四旋翼无人机系统的总扰动,使用总扰动偏差及偏差的微分作为输入的模糊控制器来优化LESO对总扰动的估计精度.此外,分析了LESO的收敛性及闭环系统的稳定性.最后通过对比仿真验证了所提控制策略的有效性,并从系统的控制信号,动态响应能力和抗干扰能力等方面对控制方案的性能进行了定量分析.展开更多
文摘针对X-Y平台中模型误差和扰动未知等问题,本文以夹胶玻璃自动切膜为应用背景,设计自动切膜恒力控制系统,并对系统中的交互力进行分析与建模。提出了一种改进线性自抗扰(linear active disturbance rejection controller,LADRC)力控制器,将滑模控制嵌入到基于预报的线性跟踪微分器(tracking differentiator,TD)中,平衡滤波与相位滞后间的矛盾,利用分数阶比例微分(fractional order proportion differentiation,FOPD)快速响应跟踪力误差,并通过Lyapunov函数对改进线性跟踪微分器进行稳定性证明。通过与线性自抗扰进行比较,对所设计的控制器进行了仿真分析与实验验证。实验结果表明,当玻璃位置等参数发生变化时,基于改进跟踪微分器的线性自抗扰控制系统仍能较好地实现对切刀的交互力控制,有效保证切膜效果,证明了提出方法的有效性与实用性。
文摘四旋翼无人机系统具有参数不确定性及强耦合性的特点,其飞行性能容易受到外部干扰而下降.为了保证四旋翼无人机飞行的稳定性,本文提出了一种基于改进线性扩张状态观测器(Linear Extended State Observer,LESO)的模糊线性自抗扰控制方法.通过模糊算法自适应调节线性自抗扰控制器的参数,基于Levant跟踪微分器跟踪四旋翼无人机位置及姿态角的二阶微分信号进而提取四旋翼无人机系统的总扰动,使用总扰动偏差及偏差的微分作为输入的模糊控制器来优化LESO对总扰动的估计精度.此外,分析了LESO的收敛性及闭环系统的稳定性.最后通过对比仿真验证了所提控制策略的有效性,并从系统的控制信号,动态响应能力和抗干扰能力等方面对控制方案的性能进行了定量分析.