A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established...A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.展开更多
Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs ...Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.展开更多
This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework base...This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.展开更多
Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based n...Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.展开更多
As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit...As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance.展开更多
With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirement...With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirements on target tracking technology. Strong maneuvering refers to relatively instantaneous and dramatic changes in target acceleration or movement patterns, as well as continuous changes in speed,angle, and acceleration. However, the traditional UAV tracking algorithm model has poor adaptability and large amount of calculation. This paper applies support vector regression(SVR)to the interacting multiple model(IMM) algorithm. The simulation results show that the improved algorithm has higher tracking accuracy for highly maneuverable targets than the original algorithm, and can adjust parameters adaptively, making it more adaptable.展开更多
To solve the problems of SVM in dealing with large sample size and asymmetric distributed samples, a support vector classification algorithm based on variable parameter linear programming is proposed. In the proposed ...To solve the problems of SVM in dealing with large sample size and asymmetric distributed samples, a support vector classification algorithm based on variable parameter linear programming is proposed. In the proposed algorithm, linear programming is employed to solve the optimization problem of classification to decrease the computation time and to reduce its complexity when compared with the original model. The adjusted punishment parameter greatly reduced the classification error resulting from asymmetric distributed samples and the detailed procedure of the proposed algorithm is given. An experiment is conducted to verify whether the proposed algorithm is suitable for asymmetric distributed samples.展开更多
The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in p...The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem.展开更多
Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time ser...Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time series is taken into account in the prediction procedure; parameters of reconstruction-detay and embedding-dimension for phase-space reconstruction are calculated in light of mutual-information and false-nearest-neighbor method, respectively. Precision and functionality have been demonstrated by the experimental results on the basis of the prediction of Lorenz chaotic time series.展开更多
文摘A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.
基金Project(2002CB312200) supported by the National Key Fundamental Research and Development Program of China project(60574019) supported by the National Natural Science Foundation of China
文摘Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.
文摘This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.
基金Project(51778482)supported by the National Natural Science Foundation of China。
文摘Vibration-based pavement condition(roughness and obvious anomalies)monitoring has been expanding in road engineering.However,the indistinctive transverse cracking has hardly been considered.Therefore,a vehicle-based novel method is proposed for detecting the transverse cracking through signal processing techniques and support vector machine(SVM).The vibration signals of the car traveling on the transverse-cracked and the crack-free sections were subjected to signal processing in time domain,frequency domain and wavelet domain,aiming to find indices that can discriminate vibration signal between the cracked and uncracked section.These indices were used to form 8 SVM models.The model with the highest accuracy and F1-measure was preferred,consisting of features including vehicle speed,range,relative standard deviation,maximum Fourier coefficient,and wavelet coefficient.Therefore,a crack and crack-free classifier was developed.Then its feasibility was investigated by 2292 pavement sections.The detection accuracy and F1-measure are 97.25%and 85.25%,respectively.The cracking detection approach proposed in this paper and the smartphone-based detection method for IRI and other distress may form a comprehensive pavement condition survey system.
基金supported by the National Natural Science Foundation of China (61074127)
文摘As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance.
基金Supported by the National Creative Research Groups Science Foundation of P.R. China (NCRGSFC: 60421002) and National High Technology Research and Development Program of China (863 Program) (2006AA04 Z182)
基金supported by the Foundation of Key Laboratory of Near-Surface。
文摘With the development of technology, the relevant performance of unmanned aerial vehicles(UAVs) has been greatly improved, and various highly maneuverable UAVs have been developed, which puts forward higher requirements on target tracking technology. Strong maneuvering refers to relatively instantaneous and dramatic changes in target acceleration or movement patterns, as well as continuous changes in speed,angle, and acceleration. However, the traditional UAV tracking algorithm model has poor adaptability and large amount of calculation. This paper applies support vector regression(SVR)to the interacting multiple model(IMM) algorithm. The simulation results show that the improved algorithm has higher tracking accuracy for highly maneuverable targets than the original algorithm, and can adjust parameters adaptively, making it more adaptable.
基金the National Natural Science Foundation of China (70471074)China Postdoctoral Science Foundation(2005038042)Department of Science and Technology of Guangdong Province(2004B36001051).
文摘To solve the problems of SVM in dealing with large sample size and asymmetric distributed samples, a support vector classification algorithm based on variable parameter linear programming is proposed. In the proposed algorithm, linear programming is employed to solve the optimization problem of classification to decrease the computation time and to reduce its complexity when compared with the original model. The adjusted punishment parameter greatly reduced the classification error resulting from asymmetric distributed samples and the detailed procedure of the proposed algorithm is given. An experiment is conducted to verify whether the proposed algorithm is suitable for asymmetric distributed samples.
基金supported by the National Natural Science Foundation of China(50576033)
文摘The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem.
基金Supported by National Natural Science Foundation Of China (60873235, 60473099), Science-Technology Development Key Project of Jilin Province of China (20080318), and Program of New Century Excellent Talents in University of China (NCET-06-0300)
文摘Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time series is taken into account in the prediction procedure; parameters of reconstruction-detay and embedding-dimension for phase-space reconstruction are calculated in light of mutual-information and false-nearest-neighbor method, respectively. Precision and functionality have been demonstrated by the experimental results on the basis of the prediction of Lorenz chaotic time series.