This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLAD...This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLADRC)-based control system is transformed into a multi-input multi-output(MIMO)Lurie-like system,then sufficient condition for absolute stability based on linear matrix inequality(LMI)is proposed.Since the absolute stability is a kind of global stability,Lyapunov stability is further considered.The local asymptotical stability can be deter-mined by whether a matrix is Hurwitz or not.Using the inverted pendulum as an example,the proposed methods are verified by simulation and experiment,which show the valuable guidance for engineers to design and analyze the NL ADRC-based control system.展开更多
To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally toleran...To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.展开更多
A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the...A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.展开更多
The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are de...The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.展开更多
This paper is concerned with the reliable H∞filtering,reliable filtering,Lyapunov function,sensor failure,linear matrix inequality(LMI)filtering problem against sensor failures for a class of discrete-time systems wi...This paper is concerned with the reliable H∞filtering,reliable filtering,Lyapunov function,sensor failure,linear matrix inequality(LMI)filtering problem against sensor failures for a class of discrete-time systems with sector-bounded nonlinearities.The resulting design is that the filtering error system is asymptotically stable and meets the prescribed H∞filtering,reliable filtering,Lyapunov function,sensor failure,linear matrix inequality(LMI)norm constraint in normal case as well as in sensor failure case.Sufficient conditions for the existence of the filter are obtained by using appropriate Lyapunov functional and linear matrix inequality(LMI)techniques.Moreover,in order to reduce the design conservativeness and get better performance,we adopt the slack variable method to realize the decoupling between the Lyapunov matrices and the system dynamic matrices.A numerical example is provided to demonstrate the effectiveness of the proposed designs.展开更多
The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet d...The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example.展开更多
Performance robustness problems via the state feedback controller are investigated for a class of uncertain nonlinear systems with time-delay in both state and control, in which the neural networks are used to model t...Performance robustness problems via the state feedback controller are investigated for a class of uncertain nonlinear systems with time-delay in both state and control, in which the neural networks are used to model the nonlinearities. By using an appropriate uncertainty description and the linear difference inclusion technique, sufficient conditions for existence of such controller are derived based on the linear matrix inequalities (LMIs). Using solutions of LMIs, a state feedback control law is proposed to stabilize the perturbed system and guarantee an upper bound of system performance, which is applicable to arbitrary time-delays.展开更多
The robust fault-tolerant control problem of linear uncertain systems is studied. It is shown that a solution for this problem can be obtained from a H∞ robust predictive controller (RMPC) by the method of linear m...The robust fault-tolerant control problem of linear uncertain systems is studied. It is shown that a solution for this problem can be obtained from a H∞ robust predictive controller (RMPC) by the method of linear matrix inequality (LMI). This approach has the advantages of both H∞ control and MPC: the robustness and ability to handle constraints explicitly. The robust closed-loop stability of the linear uncertain system with input and output constraints is proven under an actuator and sensor faults condition. Finally, satisfactory results of simulation experiments verify the validity of this algorithm.展开更多
This paper aims at solving the state filtering problem for linear systems with state constraints. Three classes of typical state constraints, i.e., linear equality, quadratic equality and inequality, are discussed. By...This paper aims at solving the state filtering problem for linear systems with state constraints. Three classes of typical state constraints, i.e., linear equality, quadratic equality and inequality, are discussed. By using the linear relationships among different state variables, a reduced-order Kalman filter is derived for the system with linear equality constraints. Afterwards, such a solution is applied to the cases of the quadratic equality constraint and inequality constraints and the two constrained state filtering problems are transformed into two relative constrained optimization problems. Then they are solved by the Lagrangian multiplier and linear matrix inequality techniques, respectively. Finally, two simple tracking examples are provided to illustrate the effectiveness of the reduced-order filters.展开更多
The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral in...The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral inequality method and Lyapunov-Krasovskii stability theory were used to derive new delay-dependent bounded real lemmas for a non-fragile state-feedback controller containing additive or multiplicative uncertainties. They ensure that the closed-loop system is internally stable and has a given H∞ disturbance attenuation level. Then, methods of designing a non-fragile H∞ state feedback controller were presented. No parameters need to be tuned and can be easily determined by solving linear matrix inequalities. Finally, the validity of the proposed methods was demonstrated by a numerical example with the asymptotically stable curves of system state and controller output under the initial condition of x(0)=1 0 -1]T and h=0.8 time-delay boundary.展开更多
A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represe...A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI). Finally, based on the LDI model, a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints. Compared with the existing nonlinear filters, NNBNF is time-invariant and numerically tractable. The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.展开更多
The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii function...The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii functional method, a sufficient delaydependent condition for asymptotic stability of nonlinear systems is offered. Then, this condition is used to design a new efficient delayed state feedback controller(DSFC) for stabilization of such systems. These conditions are in the linear matrix inequality(LMI) framework. Illustrative examples confirm the improvement of the proposed approach over the similar cases. Furthermore, the obtained stability and stabilization conditions will be extended to uncertain discrete time delayed systems(UDTDS) with polytopic parameter uncertainties and also with norm-bounded parameter uncertainties.展开更多
The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain syst...The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.展开更多
To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the ...To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the Mittag-Lefler function,Laplace transform and Gronwall inequality,a linear stabilizing controller is derived,which uses the fractional order of the delayed system and the upper bound of system nonlinear functions.In the second method,at first a sufficient stability condition for the delayed system is given in the form of a simple linear matrix inequality(LMI)which can easily be solved.Then,on the basis of this result,a stabilizing pseudo-state feedback controller is designed in which the controller gain matrix is easily computed by solving an LMI in terms of delay bounds.Simulation results show the effectiveness of the proposed methods.展开更多
This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(F...This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases.展开更多
To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensati...To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method.展开更多
The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlineariti...The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.展开更多
A unknown input observer (UIO) design for a class of linear time-delay systems when the observer error can't completely decouple from unknown input is dealt with. A sufficient condition to its existence is presente...A unknown input observer (UIO) design for a class of linear time-delay systems when the observer error can't completely decouple from unknown input is dealt with. A sufficient condition to its existence is presented based on Lyapunov stability method. Design problem of the proposed observer is formulated in term of linear matrix inequalities. Two design problems of the observer with internal delay and without internal delay are formulated. Based on H∞ control theory in time-delay systems, the proposed observer is designed in term of linear matrix inequalities (LMI). A design algorithm is proposed. The effective of the proposed approach is illustrated by a numerical example.展开更多
An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the ...An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.展开更多
基金supported by the National Natural Science Foundation of China(61836001).
文摘This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLADRC)-based control system is transformed into a multi-input multi-output(MIMO)Lurie-like system,then sufficient condition for absolute stability based on linear matrix inequality(LMI)is proposed.Since the absolute stability is a kind of global stability,Lyapunov stability is further considered.The local asymptotical stability can be deter-mined by whether a matrix is Hurwitz or not.Using the inverted pendulum as an example,the proposed methods are verified by simulation and experiment,which show the valuable guidance for engineers to design and analyze the NL ADRC-based control system.
基金Supported by the State Key Program of National Natural Science of China (60534010), National Basic Research Program of China (973 Program)(2009CB320604), National Natural Science Foundation of China (60674021), the Funds for Creative Research Groups of China (60521003), the 111 Project(B08015), and the Funds of Ph.D. Program of Ministry of Eduction, China (20060145019).
基金supported by the National Natural Science Foundation of China(90816023).
文摘To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.
基金This project was supported by the National Natural Science Foundation of China(69874008)
文摘A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.
文摘The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.
基金Supported by National Basic Research Program of China(973 Program)(2009CB320604)State Key Program of National Natural Science Foundation of China(60534010)+3 种基金National Natural Science Foundation of China(60674021)Funds for Creative Research Groups of China(60821063)the 111 Project(B08015)the Funds of Doctoral Program of Ministry of Education of China(20060145019)
文摘This paper is concerned with the reliable H∞filtering,reliable filtering,Lyapunov function,sensor failure,linear matrix inequality(LMI)filtering problem against sensor failures for a class of discrete-time systems with sector-bounded nonlinearities.The resulting design is that the filtering error system is asymptotically stable and meets the prescribed H∞filtering,reliable filtering,Lyapunov function,sensor failure,linear matrix inequality(LMI)norm constraint in normal case as well as in sensor failure case.Sufficient conditions for the existence of the filter are obtained by using appropriate Lyapunov functional and linear matrix inequality(LMI)techniques.Moreover,in order to reduce the design conservativeness and get better performance,we adopt the slack variable method to realize the decoupling between the Lyapunov matrices and the system dynamic matrices.A numerical example is provided to demonstrate the effectiveness of the proposed designs.
基金supported by the National Natural Science Foundation of China (60874053 60574088)
文摘The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example.
基金This project was supported by the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (NCET-05-0485).
文摘Performance robustness problems via the state feedback controller are investigated for a class of uncertain nonlinear systems with time-delay in both state and control, in which the neural networks are used to model the nonlinearities. By using an appropriate uncertainty description and the linear difference inclusion technique, sufficient conditions for existence of such controller are derived based on the linear matrix inequalities (LMIs). Using solutions of LMIs, a state feedback control law is proposed to stabilize the perturbed system and guarantee an upper bound of system performance, which is applicable to arbitrary time-delays.
基金the "973" National Safety Importance Basal Research (5131201)"863" National DefenseHigh Technology ResearchDevelopment plan of China (2002AA715021).
文摘The robust fault-tolerant control problem of linear uncertain systems is studied. It is shown that a solution for this problem can be obtained from a H∞ robust predictive controller (RMPC) by the method of linear matrix inequality (LMI). This approach has the advantages of both H∞ control and MPC: the robustness and ability to handle constraints explicitly. The robust closed-loop stability of the linear uncertain system with input and output constraints is proven under an actuator and sensor faults condition. Finally, satisfactory results of simulation experiments verify the validity of this algorithm.
基金supported by the National Key Basic Research Development Project (973 Program) (2012CB821205)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF.2009004)
文摘This paper aims at solving the state filtering problem for linear systems with state constraints. Three classes of typical state constraints, i.e., linear equality, quadratic equality and inequality, are discussed. By using the linear relationships among different state variables, a reduced-order Kalman filter is derived for the system with linear equality constraints. Afterwards, such a solution is applied to the cases of the quadratic equality constraint and inequality constraints and the two constrained state filtering problems are transformed into two relative constrained optimization problems. Then they are solved by the Lagrangian multiplier and linear matrix inequality techniques, respectively. Finally, two simple tracking examples are provided to illustrate the effectiveness of the reduced-order filters.
基金Project(60574014) supported by the National Natural Science Foundation of ChinaProject(20050533015) supported by the Doctor Subject Foundation of ChinaProject(60425310) supported by the National Science Foundation for Distinguished Youth Scholars, China
文摘The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral inequality method and Lyapunov-Krasovskii stability theory were used to derive new delay-dependent bounded real lemmas for a non-fragile state-feedback controller containing additive or multiplicative uncertainties. They ensure that the closed-loop system is internally stable and has a given H∞ disturbance attenuation level. Then, methods of designing a non-fragile H∞ state feedback controller were presented. No parameters need to be tuned and can be easily determined by solving linear matrix inequalities. Finally, the validity of the proposed methods was demonstrated by a numerical example with the asymptotically stable curves of system state and controller output under the initial condition of x(0)=1 0 -1]T and h=0.8 time-delay boundary.
基金the National Natural Science Foundation of China (60574001)Program for New CenturyExcellent Talents in University (NCET-05-0485) and PIRTJiangnan
文摘A novel H∞ design methodology for a neural network-based nonlinear filtering scheme is addressed. Firstly, neural networks are employed to approximate the nonlinearities. Next, the nonlinear dynamic system is represented by the mode-dependent linear difference inclusion (LDI). Finally, based on the LDI model, a neural network-based nonlinear filter (NNBNF) is developed to minimize the upper bound of H∞ gain index of the estimation error under some linear matrix inequality (LMI) constraints. Compared with the existing nonlinear filters, NNBNF is time-invariant and numerically tractable. The validity and applicability of the proposed approach are successfully demonstrated in an illustrative example.
文摘The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii functional method, a sufficient delaydependent condition for asymptotic stability of nonlinear systems is offered. Then, this condition is used to design a new efficient delayed state feedback controller(DSFC) for stabilization of such systems. These conditions are in the linear matrix inequality(LMI) framework. Illustrative examples confirm the improvement of the proposed approach over the similar cases. Furthermore, the obtained stability and stabilization conditions will be extended to uncertain discrete time delayed systems(UDTDS) with polytopic parameter uncertainties and also with norm-bounded parameter uncertainties.
基金supported by the National Natural Science Foundation of China (6090405161021002)
文摘The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.
文摘To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the Mittag-Lefler function,Laplace transform and Gronwall inequality,a linear stabilizing controller is derived,which uses the fractional order of the delayed system and the upper bound of system nonlinear functions.In the second method,at first a sufficient stability condition for the delayed system is given in the form of a simple linear matrix inequality(LMI)which can easily be solved.Then,on the basis of this result,a stabilizing pseudo-state feedback controller is designed in which the controller gain matrix is easily computed by solving an LMI in terms of delay bounds.Simulation results show the effectiveness of the proposed methods.
基金the National Natural Science Foundation of China(Grant Nos.62303380,62176214,62101590,62003268)the Aeronautical Science Foundation of China(Grant No.201907053001).
文摘This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases.
基金supported by the National Basic Research Program(973Program)(2015CB755805)the National Natural Science Foundation of China(61374145)
文摘To solve the flight safety problem caused by nonlinear instabilities(category II pilot induced oscillations, PIOs) of the closed-loop pilot-vehicle system with rate-limiting actuator, the antiwindup(AW) compensation method to avoid category II PIOs is investigated. Firstly, the AW compensation method originally used for controlling input magnitude limited system is introduced, then this method is extended for controlling input rate-limiting system through a circle criterion theorem. Secondly, the establishment of the AW compensator is transformed into the solving of linear matrix inequalities. Finally, an AW compensator establishment algorithm for the closed-loop pilot-vehicle system with the rate-limiting actuator is obtained. The effectiveness of the AW compensation method to avoid category II PIOs is validated by time-domain simulations,and compared with rate-limited feedback(RLF) command rate compensation method. The results show that the AW compensation method can effectively suppress category II PIOs and maintain the nominal performance when the closed-loop pilot-vehicle system is normal. Unlike the command rate compensator which works upon system uninterruptedly, the AW compensation method affects the closed-loop pilot-vehicle system only when the rate-limiting of actuator is activated, so it is a novel PIO avoidance method.
基金supported partly by the National Natural Science Foundation of China(60574001)the Program for New Century Excellent Talents in University(050485)the Program for Innovative Research Team of Jiangnan University.
文摘The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.
基金This project was supported by the National Natural Science Foundation of China(60374024)
文摘A unknown input observer (UIO) design for a class of linear time-delay systems when the observer error can't completely decouple from unknown input is dealt with. A sufficient condition to its existence is presented based on Lyapunov stability method. Design problem of the proposed observer is formulated in term of linear matrix inequalities. Two design problems of the observer with internal delay and without internal delay are formulated. Based on H∞ control theory in time-delay systems, the proposed observer is designed in term of linear matrix inequalities (LMI). A design algorithm is proposed. The effective of the proposed approach is illustrated by a numerical example.
基金Project(61074074)supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401)supported by the Group Innovation Fund,China
文摘An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.