The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficie...The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method.展开更多
基金The project was supported by the National Natural Science Foundation of China (60471002) and the Jiangxi ProvincialNatural Science Foundation (0412014)
文摘The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method.
基金supported by the National Natural Science Foundation of China(1127105011371183+2 种基金61403036)the Science and Technology Development Foundation of CAEP(2013A04030202013B0403068)
文摘准确预测台区的电力负荷,能够促使电力企业合理安排调度计划,保障台区电力安全和经济稳定运行。为了充分挖掘电力负荷数据的特征,提高预测的精度,提出一种基于自适应辛几何模态分解(adaptive symplectic geometry mode decomposition,ASGMD)、多元线性回归(multiple linear regression,MLR)和卷积长短时记忆(convolutional long short-term memory,CLSTM)网络的电力负荷预测方法。首先,应用ASGMD将台区负荷数据分解为弱相关和强相关两种分量;然后,利用MLR和CLSTM分别对上述两种分量分别进行预测;最后,组合各模型结果,得到最终负荷预测值。实例分析结果表明,所提模型较其他模型具有更高的预测准确度。