期刊文献+
共找到141篇文章
< 1 2 8 >
每页显示 20 50 100
Piecewise linear recursive convolution FDTD method for magnetized plasmas 被引量:4
1
作者 Liu Song Zhong Shuangying Liu Shaobin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期290-295,共6页
The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficie... The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method greatly improves accuracy over the original recursive convolution (RC) FDTD approach but retains its speed and efficiency advantages. A PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time is presented, enabled the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations the reflection and transmission coefficients through a magnetized plasma layer. The results show that the PLRC-FDTD method has significantly improved the accuracy over the original RC method. 展开更多
关键词 electromagnetic wave FDTD methods piecewise linear recursive convolution magnetized plasma.
在线阅读 下载PDF
Blind recognition of k/n rate convolutional encoders from noisy observation 被引量:14
2
作者 Li Huang Wengu Chen +1 位作者 Enhong Chen Hong Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期235-243,共9页
Blind recognition of convolutional codes is not only essential for cognitive radio, but also for non-cooperative context. This paper is dedicated to the blind identification of rate k/n convolutional encoders in a noi... Blind recognition of convolutional codes is not only essential for cognitive radio, but also for non-cooperative context. This paper is dedicated to the blind identification of rate k/n convolutional encoders in a noisy context based on Walsh-Hadamard transformation and block matrix (WHT-BM). The proposed algorithm constructs a system of noisy linear equations and utilizes all its coefficients to recover parity check matrix. It is able to make use of fault-tolerant feature of WHT, thus providing more accurate results and achieving better error performance in high raw bit error rate (BER) regions. Moreover, it is more computationally efficient with the use of the block matrix (BM) method. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Cognitive radio convolution convolutional codes Error correction Hadamard matrices Hadamard transforms linear transformations Mathematical transformations Matrix algebra Signal encoding
在线阅读 下载PDF
基于Transformer与深度可分离卷积的轻量级遥感图像语义分割
3
作者 马飞 张森峰 +1 位作者 杨飞霞 徐光宪 《电光与控制》 北大核心 2025年第7期33-38,66,共7页
遥感图像语义分割在环境变化监测、汽车辅助驾驶等领域具有广泛的应用。遥感图像在语义对象层面表现出较大的类内变化和较小的类间差异,导致分割模型精度受限且耗费计算资源。为此提出了一种基于Transformer与深度可分离卷积的轻量级遥... 遥感图像语义分割在环境变化监测、汽车辅助驾驶等领域具有广泛的应用。遥感图像在语义对象层面表现出较大的类内变化和较小的类间差异,导致分割模型精度受限且耗费计算资源。为此提出了一种基于Transformer与深度可分离卷积的轻量级遥感图像语义分割方法。首先,引入权重自适应的多头自注意力,在全局范围内对远距离像素关联性建模,获取丰富的上下文信息;其次,构建堆叠的深度可分离卷积层,以低计算复杂度减少空间细节信息的丢失;此外利用线性注意力机制设计特征聚合模块,对全局情景信息与空间细节信息进行融合。经过在Vaihingen和Potsdam数据集上测试结果表明,所提方法的分割总体准确率分别高达92.6%和92.1%,GFLOPs仅为11.5,不仅有效提升了分割精度,而且大大降低了计算复杂度。 展开更多
关键词 遥感图像 语义分割 深度学习 深度可分离卷积 线性注意力机制
在线阅读 下载PDF
基于蜉蝣优化算法的时空融合交通流预测研究
4
作者 张红 巩蕾 +1 位作者 曹洁 张玺君 《哈尔滨工程大学学报》 北大核心 2025年第4期764-771,796,共9页
针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性... 针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性,通过门控机制融合ChebNet捕获的静态空间特征与图卷积网络结合注意力机制捕获的动态空间特征,构建考虑动态时空特征的预测模型,并借助蜉蝣优化算法优化超参数。研究表明:在PeMSD7(M)数据集上,15、30和45 min下该模型MAE的预测精度较T-GCN提高了5.91%、9.06%和10.72%,本文方法具有有效性与优越性。 展开更多
关键词 交通流预测 动态时空特性 超参数 蜉蝣优化算法 时间卷积网络 门控线性单元 注意力机制 图卷积网络
在线阅读 下载PDF
一种自适应残差卷积自编码网络及其故障诊断应用
5
作者 潘天成 陈龙 +1 位作者 蒲春雷 陈志强 《机电工程》 北大核心 2025年第3期529-538,共10页
针对传统卷积自编码器(CAE)会将不同故障产生的相似信号进行相同的非线性变换,导致故障诊断准确率下降的问题,提出了一种自适应残差卷积自编码网络(ARCAE),并将其应用于滚动轴承故障诊断中。首先,在残差模块的基础上,引入了自适应参数... 针对传统卷积自编码器(CAE)会将不同故障产生的相似信号进行相同的非线性变换,导致故障诊断准确率下降的问题,提出了一种自适应残差卷积自编码网络(ARCAE),并将其应用于滚动轴承故障诊断中。首先,在残差模块的基础上,引入了自适应参数化修正线性单元(APReLU),建立了自适应残差模块(ARM),ARM可以对相似的输入特征进行自适应非线性变换,避免了特征的错误识别;其次,在CAE中嵌入多级ARM,构建了ARCAE,增加了CAE的深度,提取了更具鉴别性的深层次特征,同时有效防止了网络加深而造成的性能退化;最后,基于ARCAE建立了针对一维信号的故障诊断新方法,将其应用于无监督滚动轴承故障诊断中,并通过两个不同类型的实验,对上述方法的有效性进行了验证。研究结果表明:在恒定转速工况下,ARCAE的诊断准确率最高,平均准确率达到了97.05%,且标准差仅为0.007,远低于其他几种传统CAE网络;在变转速工况下,ARCAE模型诊断准确率仍然是最高的,平均准确率达到了93.25%,由此说明ARCAE具有较高的特征提取能力和分类准确率;此外,变转速工况下,由于转速变化导致不同状态的振动信号特征差异变大,诊断难度加大,但与其他几种传统CAE网络相比,ARCAE诊断准确率下降最少,仅为5.37%,说明ARCAE具有更强的鲁棒性和稳定性。 展开更多
关键词 滚动轴承 自适应残差卷积自编码网络 自适应参数化修正线性单元 自适应残差模块 无监督故障诊断 特征提取
在线阅读 下载PDF
斯特林曲线的离散卷积生成及其求值算法
6
作者 王瑜 刘婉柔 +1 位作者 解滨 韩力文 《浙江大学学报(理学版)》 北大核心 2025年第1期122-132,共11页
斯特林基函数是由离散概率模型生成的一类有理基函数。通过分析基函数的逐层递推关系,构造了斯特林基函数的离散卷积结构。结合离散卷积满足的交换性,得到n次斯特林曲线的n!种de Casteljau算法,并将其用于曲线的递归求值,进而得到n次斯... 斯特林基函数是由离散概率模型生成的一类有理基函数。通过分析基函数的逐层递推关系,构造了斯特林基函数的离散卷积结构。结合离散卷积满足的交换性,得到n次斯特林曲线的n!种de Casteljau算法,并将其用于曲线的递归求值,进而得到n次斯特林曲线的2种线性求值算法、速端曲线离散卷积表示以及首末两个n次斯特林基函数的导函数显式表达式。研究可推广至一类嵌套空间中的有理基函数及其曲线曲面。 展开更多
关键词 斯特林曲线 离散卷积 de Casteljau算法 线性复杂度 速端曲线
在线阅读 下载PDF
使用通道融合和序列平稳化策略的长期时间序列预测方法
7
作者 赵龙港 车超 赵天明 《小型微型计算机系统》 北大核心 2025年第5期1120-1126,共7页
长期时间序列预测在现实场景中扮演重要角色.先前的研究表明,基于Transformers的模型采用的逐点自注意力会增加计算复杂度,而基于线性结构和通道独立的模型可以获得更高的效率和准确性.然而,长期时间模式在不同通道之间也存在难以抽取... 长期时间序列预测在现实场景中扮演重要角色.先前的研究表明,基于Transformers的模型采用的逐点自注意力会增加计算复杂度,而基于线性结构和通道独立的模型可以获得更高的效率和准确性.然而,长期时间模式在不同通道之间也存在难以抽取的依赖关系.为了解决计算复杂度高和复杂时间模式难以捕捉的问题,该文提出了通道融合和序列平稳化模型,模型结合了通道独立与通道依赖的训练策略,基于线性结构发掘序列单个通道的相关性,并使用由傅里叶运算启发的卷积结构来自适应地融合不同的通道.同时,通过堆叠序列通道融合-分解模块,进一步提高模型的预测性能.此外,该文在子序列级别引入了平稳化与反平稳化模块,从而提高了模型的泛化能力.在长期预测方面,所提模型在3个通用时序数据集上的准确度超越了其他基准模型. 展开更多
关键词 时间序列预测 线性模型 周期分解 通道融合卷积 平稳化
在线阅读 下载PDF
基于自适应辛几何模态分解−多元线性回归−卷积长短时记忆的台区电力负荷预测
8
作者 方磊 楚成博 +4 位作者 何映虹 冯隆基 刘福政 王宁 张法业 《现代电力》 北大核心 2025年第4期840-846,共7页
准确预测台区的电力负荷,能够促使电力企业合理安排调度计划,保障台区电力安全和经济稳定运行。为了充分挖掘电力负荷数据的特征,提高预测的精度,提出一种基于自适应辛几何模态分解(adaptive symplectic geometry mode decomposition,AS... 准确预测台区的电力负荷,能够促使电力企业合理安排调度计划,保障台区电力安全和经济稳定运行。为了充分挖掘电力负荷数据的特征,提高预测的精度,提出一种基于自适应辛几何模态分解(adaptive symplectic geometry mode decomposition,ASGMD)、多元线性回归(multiple linear regression,MLR)和卷积长短时记忆(convolutional long short-term memory,CLSTM)网络的电力负荷预测方法。首先,应用ASGMD将台区负荷数据分解为弱相关和强相关两种分量;然后,利用MLR和CLSTM分别对上述两种分量分别进行预测;最后,组合各模型结果,得到最终负荷预测值。实例分析结果表明,所提模型较其他模型具有更高的预测准确度。 展开更多
关键词 电力负荷预测 自适应辛几何模态分解 多元线性回归 卷积长短时记忆网络
在线阅读 下载PDF
基于高斯TCN的汽油终馏点软测量研究
9
作者 仇美玲 李奇安 《石油炼制与化工》 北大核心 2025年第2期131-136,共6页
石油是现代社会的主要能源之一,常压蒸馏作为炼油产业的龙头,对其过程进行实时监测尤为重要。汽油终馏点为原油蒸馏过程中蒸出最后一滴汽油时的温度,是衡量成品油质量的关键指标。介绍并评估了高斯误差线性单元(GELU)的性能,提出将GELU... 石油是现代社会的主要能源之一,常压蒸馏作为炼油产业的龙头,对其过程进行实时监测尤为重要。汽油终馏点为原油蒸馏过程中蒸出最后一滴汽油时的温度,是衡量成品油质量的关键指标。介绍并评估了高斯误差线性单元(GELU)的性能,提出将GELU作为激活函数替代时间卷积网络(TCN)中的修正线性单元(ReLU),同时改变残差结构来搭建高斯TCN模型。对某炼油厂常压蒸馏塔塔顶汽油终馏点及其影响因素进行样本采集,使用偏最小二乘法(PLS)对高维自变量数据进行降维,完成汽油终馏点的辅助变量选取。使用搭建的高斯TCN软测量模型对常压蒸馏塔塔顶汽油终馏点进行预测,仿真验证所提出的模型拟合度和预测精度较传统TCN预测模型有明显的优势,为炼油产业的高效益发展提供了借鉴。 展开更多
关键词 高斯误差线性单元 时间卷积网络 软测量 汽油终馏点
在线阅读 下载PDF
融合卷积神经网络与线性回归的带式输送机托辊故障音频识别方法
10
作者 陈湘源 秦伟 +1 位作者 刘晏驰 罗明华 《煤炭科学技术》 北大核心 2025年第S1期389-398,共10页
针对煤矿井下带式输送机托辊故障音频识别中存在的声源复杂、特征不显著等问题,提出一种融合卷积神经网络与线性回归的托辊故障音频识别方法。首先通过带式输送机巡检机器人搭载的MEMS拾音器采集托辊沿线音频信号,基于小波自相关去噪技... 针对煤矿井下带式输送机托辊故障音频识别中存在的声源复杂、特征不显著等问题,提出一种融合卷积神经网络与线性回归的托辊故障音频识别方法。首先通过带式输送机巡检机器人搭载的MEMS拾音器采集托辊沿线音频信号,基于小波自相关去噪技术对声音进行预处理,抑制音频信号中的背景噪声信号,优化数据质量。其次利用声纹谱分离技术,采用HPSS(谐波冲击波源分离)方法分离出谐波、冲击波分量,增强托辊故障声音信号特征;基于MFCC(梅尔频率倒谱系数)声纹特征提取方法,解析出谐波-冲击波中托辊声纹特征信息,生成声谱图,提升托辊故障声纹表征能力。最后以声谱图与声品质特征为数据源,融合故障多模态特征,丰富数据维度,基于残差卷积神经网络结构计算图像特征,多元线性回归快速拟合音频基本特征,生成融合卷积神经网络与线性回归的托辊故障音频识别模型进行联合训练,通过Focal Loss损失函数优化模型训练的样本权重,提高模型对托辊故障识别的准确率。用该方法对国能榆林郭家湾煤矿实际采集的带式输送机故障托辊音频信息进行分析验证,结果表明:托辊故障检出率达到95.79%,检出准确率达到95.60%。 展开更多
关键词 托辊故障 音频识别 声纹特征 声谱图 残差卷积神经网络 多元线性回归
在线阅读 下载PDF
一种基于线性零磁场的动脉血管扫描成像方法仿真 被引量:1
11
作者 杨丹 王雨忱 +2 位作者 李天兆 徐彬 吴莹 《电工技术学报》 EI CSCD 北大核心 2024年第2期343-355,共13页
基于磁电耦合效应的血流检测及血管成像是实现心血管疾病早期诊疗的有效方法之一。该文基于磁场与血流耦合电效应,设计一种用于动脉血管扫描成像的组合线圈结构,产生带有零磁场线(FFL)区域的线性梯度磁场;在此结构的基础上,通过控制激... 基于磁电耦合效应的血流检测及血管成像是实现心血管疾病早期诊疗的有效方法之一。该文基于磁场与血流耦合电效应,设计一种用于动脉血管扫描成像的组合线圈结构,产生带有零磁场线(FFL)区域的线性梯度磁场;在此结构的基础上,通过控制激励电流驱动FFL实现成像区域双向扫描;结合卷积神经网络(CNN)实现磁电耦合信号与血管信息的非线性映射,进而提出一种基于线性零磁场的动脉血管扫描成像新方法。采用多物理场仿真软件COMSOL对基于线性零磁场的血管扫描成像方法进行建模,求解磁电耦合信号,验证了所提出方法的合理性和有效性。结果表明,线性梯度磁场模式下的磁电耦合信号含有血管位置、半径等信息;CNN重建血管位置误差平均值为1.5694 mm,重建血管半径的方均误差(MSE)和相关系数(CC)平均值分别为0.0548和0.9870。研究结果可用于血管成像装置设计及后续相关临床应用提供研究支撑。 展开更多
关键词 心血管疾病 磁场与血流耦合电效应 零磁场线 线性梯度磁场 卷积神经网络 COMSOL
在线阅读 下载PDF
融合双图卷积与门控线性单元的方面级情感分析模型
12
作者 杨春霞 吴亚雷 +1 位作者 闫晗 黄昱锟 《计算机工程》 CAS CSCD 北大核心 2024年第4期141-149,共9页
方面级情感分析旨在确定句子中给定方面的情感极性。现有的基于图神经网络的方面级情感分析存在以下2个方面的不足:忽略了不同类型的句法依存关系和语料库中的词共现信息,以及不能准确地控制情感信息流向给定方面。针对以上问题,提出融... 方面级情感分析旨在确定句子中给定方面的情感极性。现有的基于图神经网络的方面级情感分析存在以下2个方面的不足:忽略了不同类型的句法依存关系和语料库中的词共现信息,以及不能准确地控制情感信息流向给定方面。针对以上问题,提出融合双图卷积与门控线性单元(GLU)的方面级情感分析模型。该模型首先采用全局词汇图来编码语料库中的词共现信息,在词汇图和句法图上利用分类概括结构来区分各种词共现频率和不同类型的句法依存关系。然后分别在2个图上进行双层卷积,继而使用Bi Affine变换模块作为桥梁,在2个图卷积网络模块之间有效地交换相关特征,从而有效地融合句法信息和词汇信息。最后利用GLU控制情感信息流向给定方面,使模型可以更专注地分析与该方面相关的情感信息,避免不相关的情感信息影响对给定方面的情感分析结果,从而提高分析的准确性。实验结果表明,在Twitter、Laptop14、Restaurant15和Restaurant16数据集上,该模型的准确率分别达到74.82%、77.61%、82.29%和89.81%,F1值分别达到72.97%、73.52%、67.72%和73.37%,方面级情感分类效果明显优于其他基线模型。 展开更多
关键词 方面级情感分析 词共现信息 双图卷积 信息交互 门控线性单元
在线阅读 下载PDF
基于卷积神经网络编码加扰类型识别
13
作者 卫翔 刘星璇 谭继远 《火力与指挥控制》 CSCD 北大核心 2024年第11期118-127,共10页
针对线性分组码加扰和卷积码加扰类型的识别问题,提出了一种利用相关特征和浅层神经网络相结合的加扰类型识别方法。推导了加扰序列码元的互相关特征,引入了有偏自相关函数,两者结合作为输入的相关特征;在分析加扰序列相关性的基础上,... 针对线性分组码加扰和卷积码加扰类型的识别问题,提出了一种利用相关特征和浅层神经网络相结合的加扰类型识别方法。推导了加扰序列码元的互相关特征,引入了有偏自相关函数,两者结合作为输入的相关特征;在分析加扰序列相关性的基础上,构建了实时性较强的浅层神经网络模型;将加扰数据集输入到网络模型中,完成了网络的训练和识别测试。仿真结果表明,相比于基于多重分型谱的传统算法,所提算法能识别多种加扰类型,同时所提算法的抗误码性能更强,为进一步进行扰码参数识别奠定了基础。 展开更多
关键词 线性分组码加扰 卷积码加扰 码元互相关 有偏自相关函数 浅层神经网络
在线阅读 下载PDF
人工智能在视网膜液监测中的应用指南(2024) 被引量:1
14
作者 《人工智能在视网膜液监测中的应用指南()》专家组 国际转化医学会眼科专业委员会 +44 位作者 中国医药教育协会眼科影像与智能医疗分会 中国眼科影像研究专家组 邵毅 陈有信 迟玮 张铭志 许言午 刘祖国 杨卫华 谭钢 廖萱 李世迎 计丹 接英 龚岚 胡亮 孙传宾 马健 杨文利 张慧 李中文 蔡建奇 邵婷婷 彭娟 赵慧 刘光辉 苏兆安 陈新建 李程 邹文进 刘昳 秦牧 蒋贻平 王佰亮 李凯军 邱坤良 胡丽丹 邓志宏 文丹 黄明海 温鑫 石文卿 唐丽颖 王燊 曾艳梅 《眼科新进展》 CAS 北大核心 2024年第7期505-511,共7页
老年性黄斑变性(SMD)是一种复杂的、高度遗传的、多因素作用的疾病,患者黄斑区结构会发生衰老性改变,表现为视网膜进行性变性和视力逐渐丧失。全世界约有2亿人受到SMD的影响,并且随着人口老龄化的加剧,发病率不断上升。近年来人工智能(... 老年性黄斑变性(SMD)是一种复杂的、高度遗传的、多因素作用的疾病,患者黄斑区结构会发生衰老性改变,表现为视网膜进行性变性和视力逐渐丧失。全世界约有2亿人受到SMD的影响,并且随着人口老龄化的加剧,发病率不断上升。近年来人工智能(AI)技术发展迅猛,AI技术在医学领域的应用为医疗行业的发展带来新的可能。利用AI对视网膜液进行定性定量评估,不仅可以在新生血管性SMD的诊断过程中发挥重要作用,还可以在治疗过程中根据治疗效果及时调整治疗方案,为患者提供更加个性化的治疗。本指南总结了AI在SMD治疗中的应用,包括AI在视网膜液监测技术中的应用进展、临床应用及未来发展,为眼科医生评估患者病情、设计治疗方案及判断预后提供足够的帮助。 展开更多
关键词 人工智能 老年性黄斑变性 光学相干断层扫描 卷积神经网络 线性混合模型
在线阅读 下载PDF
基于动态图注意力与标签传播的实体对齐 被引量:3
15
作者 莫少聪 陈庆锋 +2 位作者 谢泽 刘春雨 邱俊铼 《计算机工程》 CAS CSCD 北大核心 2024年第4期150-159,共10页
实体对齐是多源数据库融合的有效方法,旨在找出多源知识图谱中的共指实体。近年来,图卷积网络(GCN)已成为实体对齐表示学习的新范式,然而,不同组织构建知识图谱的目标及规则存在巨大差异,要求实体对齐模型能够准确发掘知识图谱之间的长... 实体对齐是多源数据库融合的有效方法,旨在找出多源知识图谱中的共指实体。近年来,图卷积网络(GCN)已成为实体对齐表示学习的新范式,然而,不同组织构建知识图谱的目标及规则存在巨大差异,要求实体对齐模型能够准确发掘知识图谱之间的长尾实体特征,并且现有的GCN实体对齐模型过于注重关系三元组的结构表示学习,忽略了属性三元组丰富的语义信息。为此,提出一种实体对齐模型,引入动态图注意力网络聚合属性结构三元组表示,降低无关属性结构对实体表示的影响。同时,为缓解知识图谱的关系异构问题,引入多维标签传播对实体邻接矩阵的不同维度进行压缩,将实体特征根据压缩后的知识图谱邻接关系进行传播以获得关系结构表示,最后通过线性规划算法对实体表示相似度矩阵进行迭代以得到最终的对齐结果。在公开数据集ENFR-15K、EN-ZH-15K以及中文医学数据集MED-BBK-9K上进行实验,结果表明,该模型的Hits@1分别为0.942、0.926、0.427,Hits@10分别为0.963、0.952、0.604,MRR分别为0.949、0.939、0.551,消融实验结果也验证了模型中各模块的有效性。 展开更多
关键词 数据库融合 图卷积网络 实体对齐 标签传播 线性规划
在线阅读 下载PDF
深度学习在边界层流动稳定性分析中的应用 被引量:1
16
作者 樊佳坤 姚方舟 +3 位作者 黄江涛 徐家宽 乔磊 白俊强 《空气动力学学报》 CSCD 北大核心 2024年第3期30-46,共17页
基于线性稳定性理论(linear stability theory,LST)的e^(N)方法是边界层转捩预测中比较可靠的方法之一。为了将传统LST特征值问题的求解过程大幅度简化和自动化,使用卷积神经网络(convolutional neural network,CNN)在边界层相似性解的... 基于线性稳定性理论(linear stability theory,LST)的e^(N)方法是边界层转捩预测中比较可靠的方法之一。为了将传统LST特征值问题的求解过程大幅度简化和自动化,使用卷积神经网络(convolutional neural network,CNN)在边界层相似性解的LST分析样本集上进行训练,针对流向和横流不稳定性,分别在自然层流翼型和无限展长后掠翼上预测扰动的当地增长率、N因子和转捩位置,结果与标准LST一致性良好;验证了CNN可以将边界层剖面速度型导数信息编码为满足伽利略不变性的标量特征,在翼型边界层中起到了表征压力梯度的作用,在后掠翼边界层中起到了表征横流强度的作用;在CNN对LST特征值预测的基础上,以LST控制方程、边界条件和平凡解惩罚项构造总损失函数来训练内嵌物理信息神经网络(physics-informed neural network,PINN),实现了在不依赖样本的情况下对LST特征函数的准确预测,结果表明PINN可以为LST的特征函数问题提供有效的建模方法。 展开更多
关键词 线性稳定性理论 e^(N)方法 卷积神经网络 内嵌物理信息神经网络 流向不稳定性 横流不稳定性
在线阅读 下载PDF
基于SimAM注意力机制的轴承故障迁移诊断模型 被引量:5
17
作者 包从望 朱广勇 +1 位作者 邹旺 郭灏 《机电工程》 CAS 北大核心 2024年第5期862-869,893,共9页
针对轴承故障在跨工况迁移诊断时,其域不变特征难以提取,易出现模型过拟合这一问题,提出了一种基于无参数注意力模块(SimAM)的轴承故障迁移诊断方法。首先,以一维卷积神经网络作为基本框架,利用自适应批量归一化(AdaBN)对各输出层进行... 针对轴承故障在跨工况迁移诊断时,其域不变特征难以提取,易出现模型过拟合这一问题,提出了一种基于无参数注意力模块(SimAM)的轴承故障迁移诊断方法。首先,以一维卷积神经网络作为基本框架,利用自适应批量归一化(AdaBN)对各输出层进行了归一化处理,经两层卷积层和两层池化层后,对输出特征进行了随机节点失活操作;然后,利用改进后的参数化修正线性单元(PReLU)激活函数自适应提取负值输入权值系数,分别以交叉熵损失函数监督训练有标签的源域数据,以均方对数误差(MSLE)作为损失函数训练无标签的目标数据;最后,利用自制实验台数据和凯斯西储轴承公开数据对模型进行了验证,分别以不同的单一工况作为源域,其余工况作为目标域进行了迁移诊断任务研究。研究结果表明:基于SimAM的轴承故障迁移诊断方具有较好的域不变特征提取的性能,且所提特征具有较好的聚类效果;自制实验台中的平均迁移精度在89.1%以上,最高均值可达97.85%,CWRU数据集中的平均迁移精度达98.68%。该成果可为后续轴承故障由实验向工业现场的迁移诊断奠定基础。 展开更多
关键词 轴承故障诊断 迁移学习 无参数注意力机制 自适应批量归一化 参数化修正线性单元 均方对数误差 卷积神经网络
在线阅读 下载PDF
基于对数条件似然比的无偏自同步扰码识别 被引量:1
18
作者 钟兆根 谭继远 谢存祥 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2757-2764,共8页
为克服现有无偏自同步扰码识别算法在低信噪比(SNR)下存在适应性差的缺点,该文提出一种基于对数条件似然比的软判决识别方法。该方法首先构建了线性分组码自同步加扰和卷积码自同步加扰的对偶向量积线性约束方程;然后推导了基于软判决... 为克服现有无偏自同步扰码识别算法在低信噪比(SNR)下存在适应性差的缺点,该文提出一种基于对数条件似然比的软判决识别方法。该方法首先构建了线性分组码自同步加扰和卷积码自同步加扰的对偶向量积线性约束方程;然后推导了基于软判决的对数条件似然比函数衡量方程的成立概率,并分析了其均值和方差的分布特性;最后通过2元假设和推导的相应判别门限来完成两种自同步加扰的识别。仿真结果表明,所提算法能够在低信噪比下完成生成多项式的识别,具有较好的适应能力,与基于求解代价函数的识别方法相比,在信噪比低于3 dB时的算法识别率得到较大提高,识别率为90%时,约有3 dB的性能增益。 展开更多
关键词 自同步扰码 线性分组码 卷积码 对数条件似然比
在线阅读 下载PDF
基于线性低秩卷积与道路网络的城市流量推断 被引量:3
19
作者 刘树林 李红军 +1 位作者 甘雨金 罗茜雅 《计算机工程》 CAS CSCD 北大核心 2024年第7期333-341,共9页
细粒度城市流量推断(FUFI)旨在从粗粒度交通流量中推断出真实的细粒度交通流量,以代替在现实世界中大量传感器设备的作用。现有的FUFI方法仅考虑到时间、天气等外部因素特征,忽略了道路网络特征对城市交通流的重要影响。此外,现有方法... 细粒度城市流量推断(FUFI)旨在从粗粒度交通流量中推断出真实的细粒度交通流量,以代替在现实世界中大量传感器设备的作用。现有的FUFI方法仅考虑到时间、天气等外部因素特征,忽略了道路网络特征对城市交通流的重要影响。此外,现有方法使用的传统残差网络结构对交通流的低级特征捕获能力不足,低级特征容易在网络深层消亡。为解决以上问题,提出一种使用线性低秩卷积与全局注意力Transformer的细粒度城市流量推断模型LLCGAT,以更好地捕获交通流的低级特征并融合道路网络特征的学习。该模型在考虑外部因素的基础上,首先将城市的道路网络作为重要的特征与交通流特征融合,并使用广泛激活的线性低秩卷积对综合特征进行特征提取,然后将综合特征与道路网络特征分别接入注意力Transformer的编码器和解码器中以进一步捕获交通流的全局空间分布。在TaxiB J-P1和Xi An两个真实世界数据集上的实验结果表明,LLCGAT模型将平均绝对百分比误差分别降低了3.3%和10.7%,均方根误差分别降低了2.3%和2.4%,平均绝对误差分别降低了3.8%和6.3%。 展开更多
关键词 智能交通系统 细粒度城市流量推断 道路网络特征 线性低秩卷积 Transformer架构
在线阅读 下载PDF
脉冲噪声下基于CNN-FRFT的线性调频信号参数估计方法
20
作者 卢景琳 郭勇 杨立东 《探测与控制学报》 CSCD 北大核心 2024年第1期96-104,113,共10页
由于脉冲噪声破坏了线性调频(LFM)信号的分数谱特征,使得基于分数谱特征的参数估计方法无法有效估计参数。针对这个问题,提出一种脉冲噪声环境下基于CNN-FRFT的LFM信号参数估计方法。首先,利用α稳定分布拟合随机脉冲噪声,构建加性含噪... 由于脉冲噪声破坏了线性调频(LFM)信号的分数谱特征,使得基于分数谱特征的参数估计方法无法有效估计参数。针对这个问题,提出一种脉冲噪声环境下基于CNN-FRFT的LFM信号参数估计方法。首先,利用α稳定分布拟合随机脉冲噪声,构建加性含噪信号,输入卷积神经网络(CNN)进行训练和测试;其次,利用训练好的CNN模型对信号进行去噪,并验证模型的去噪能力和泛化能力;最后,利用分数阶傅里叶变换(FRFT)建立去噪信号的分数谱,通过峰值点位置来估计LFM信号的参数。实验结果表明,相比于传统的基于非线性函数的方法,该方法在强脉冲噪声环境下具有更好的精度和噪声鲁棒性,CNN的应用使其具有更强的泛化能力,在实测脉冲噪声下仍可以准确估计参数。 展开更多
关键词 脉冲噪声 线性调频信号 参数估计 卷积神经网络 分数阶傅里叶变换
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部