期刊文献+
共找到186篇文章
< 1 2 10 >
每页显示 20 50 100
基于GADF与SAM-LCNN机制的石化离心风机轴承故障诊断方法
1
作者 刘森 刘美 +2 位作者 韩惠子 崔坤 陈曦 《机电工程》 北大核心 2025年第1期72-81,共10页
针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差... 针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差场将轴承一维振动信号编码为二维图像;然后,构建了融合空间注意力机制的轻量化卷积神经网络;最后,将GADF转换所得二维图像作为融合空间注意力机制的轻量化卷积神经网络的输入,进行了特征提取与故障诊断,分别采用了广东石油化工学院的石化多级离心风机轴承故障数据集与凯斯西储大学轴承故障数据集,对该方法的有效性及优越性进行了验证。研究结果表明:两种数据集的测试集分类准确率分别为99.7%和98.5%;相较于卷积神经网络(CNN)、LeNet-5和MobileNetV2三种对比方法,该离心风机滚动轴承诊断方法具有诊断精度高、诊断速度快和泛化能力强等优点。该方法能够有效地对石化离心风机轴承故障振动信号进行分类,可为石化安全生产提供保障,同时也为其他机械设备故障诊断提供参考。 展开更多
关键词 离心风机 滚动轴承 图像编码 格拉姆角场 轻量化卷积神经网络 空间注意力机制
在线阅读 下载PDF
A lightweight false alarm suppression method in heterogeneous change detection
2
作者 XU Cong HE Zishu LIU Haicheng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期899-905,共7页
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light... Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms. 展开更多
关键词 convolutional neural network(CNN) graph convolu-tional network(GCN) heterogeneous change detection lightweight false alarm suppression
在线阅读 下载PDF
基于改进MobileNetV2的烟丝种类识别
3
作者 王莉 朱雯路 +3 位作者 范磊 胡宏帅 袁强 牛群峰 《中国农机化学报》 北大核心 2025年第8期58-65,共8页
为解决烟丝形态小且不同种类烟丝之间差异小、难以识别的问题,提出一种基于改进MobileNetV2的烟丝种类识别方法。以MobileNetV2为基础网络,引入多尺度特征融合模块以获取丰富的烟丝细节信息;删除主干网络中过多的bottleneck和重新设计... 为解决烟丝形态小且不同种类烟丝之间差异小、难以识别的问题,提出一种基于改进MobileNetV2的烟丝种类识别方法。以MobileNetV2为基础网络,引入多尺度特征融合模块以获取丰富的烟丝细节信息;删除主干网络中过多的bottleneck和重新设计分类器以降低网络深度;结合知识蒸馏技术使用迁移学习后的ResNet50网络对改进后的MobileNetV2网络进行学习指导以实现模型轻量化。试验结果表明,基于改进MobileNetV2的烟丝种类识别方法对各类烟丝的识别准确率为95.37%,比基础网络提高8.6%;参数量为0.62 M,比基础网络减少1.61 M。同时,与传统的分类网络(GoogLeNet、AlexNet、ResNet50、VGG16)相比,烟丝识别准确率更高、计算量更小。 展开更多
关键词 烟丝识别 深度学习 卷积神经网络 知识蒸馏 轻量化
在线阅读 下载PDF
基于YOLOv8n改进的水稻病害轻量化检测
4
作者 郭丽峰 黄俊杰 +5 位作者 吴禹竺 王思吉 王轶哲 包羽健 苏中滨 刘宏新 《农业工程学报》 北大核心 2025年第8期156-164,共9页
为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile blo... 为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile block,iRMB)增强小目标特征捕捉能力,采用变形卷积模块DCNv2(deformable convolutional networks)优化目标几何变化适应性,结合采样算子DySample(dynamic sample)算法提升复杂环境适应能力,并改进快速空间金字塔池化模块(spatial pyramid pooling fast,SPPF)为大核分离卷积注意力模块(large separable kernel attention,LSKA)增强多尺度特征融合。试验结果表明,改进的YOLOv8-DiDL模型准确率、召回率和平均精度均值分别为91.4%、83.5%、90.8%;与原始基础网络YOLOv8n相比分别提升7.0、0.5、2.5个百分点,模型权重降低9.7%,每秒浮点运算次数提升7.4%。该研究通过改进模型显著提高了水稻病害检测的精度和部署效率,为智能化农业的实时病害监测提供了技术基础。 展开更多
关键词 水稻 病害 目标检测 YOLOv8n改进模型 卷积神经网络 模型轻量化设计
在线阅读 下载PDF
基于卷积神经网络的农作物病害检测研究综述
5
作者 乔世成 党珊珊 +3 位作者 何海祝 关强 王郝日钦 路扬 《山西农业大学学报(自然科学版)》 北大核心 2025年第2期113-127,共15页
我国是农业大国,拥有广大的农作物种植面积和丰富的农业资源。然而,近年来,农作物病害问题日益严重。农作物病害不仅直接影响产量和质量,还会造成农民的经济损失,威胁粮食安全和生态环境,对我国农业可持续发展构成了巨大威胁。因此,对... 我国是农业大国,拥有广大的农作物种植面积和丰富的农业资源。然而,近年来,农作物病害问题日益严重。农作物病害不仅直接影响产量和质量,还会造成农民的经济损失,威胁粮食安全和生态环境,对我国农业可持续发展构成了巨大威胁。因此,对农作物病害的精准检测是提高我国农业发展的关键因素。随着深度学习的不断发展,无损检测技术已得到广泛应用,利用卷积神经网络进行农作物病害的精准检测成为近年来研究的热点。卷积神经网络具有较好的图像检测与识别能力,能够适应多种病害类型,实现高效、准确的大规模检测,被广泛应用于农作物病害的精准检测中。本文首先介绍了卷积神经网络结构;然后探讨了几种典型的检测农作物病害的卷积神经网络模型;其次分析了其它神经网络研究情况并进行总结;重点讨论了目前基于小样本学习、小目标检测、网络轻量化改进的卷积神经网络热点研究问题;之后对未来农作物病害检测所面临的挑战和展望进行了总结,如针对数据集标注困难、模型缺乏泛化能力、小样本小目标数据集识别精度较低等问题,提出了建立更高质量的农作物病害数据集、优化小样本小目标数据集下的网络模型结构以及对农作物病害无损检测进行实时监测与预警等研究展望,以期为不断推进农业技术创新和应用、为我国农作物病害的精准检测研究提供参考依据。 展开更多
关键词 卷积神经网络 小样本 小目标 轻量化
在线阅读 下载PDF
基于改进SqueezeNet网络模型的破碎玉米籽粒识别方法
6
作者 姚艳春 崔春晓 +1 位作者 耿端阳 赵博 《农业工程学报》 北大核心 2025年第9期154-164,共11页
为解决SqueezeNet网络模型识别玉米等小籽粒目标存在网络层次深、卷积计算量大等问题,该研究提出了一种改进SqueezeNet网络模型的破碎玉米籽粒识别方法。首先,为优化网络结构并降低计算量,设计了SqueezeNet-dw2网络模型,改变SqueezeNet... 为解决SqueezeNet网络模型识别玉米等小籽粒目标存在网络层次深、卷积计算量大等问题,该研究提出了一种改进SqueezeNet网络模型的破碎玉米籽粒识别方法。首先,为优化网络结构并降低计算量,设计了SqueezeNet-dw2网络模型,改变SqueezeNet经典模型Fire层数,并修改了末尾卷积层的输入通道参数,修改普通卷积为深度可分离卷积;其次,利用Ghost模块设计了Fire模块expand层里的3×3卷积,改进SqueezeNet-dw2网络模型为SqueezeNet-dw2-gh网络模型,降低了模型计算量和参数量;最后,优选网络激活函数为具有参数化修正线性单元的变体激活函数PReLU,改进SqueezeNet-dw2-gh网络模型为SqueezeNet-dw2-gh-P网络模型,减小了因轻量化改进造成的准确率损失。结果表明,改进后的SqueezeNet-dw2-gh-P网络模型参数量仅为0.60 MB,比原始模型降低了51.61%,模型浮点运算量为36.71 MFLOPs,降低了48.54%,验证集准确率为93.98%,测试集准确率为92.33%,同时保证了破碎玉米籽粒识别精度。本文提出的改进SqueezeNet网络模型明显减少了参数量和浮点运算量,能够实现在移动端等资源受限的嵌入式设备上部署模型,对在线实时准确识别破碎玉米籽粒具有重要参考价值。 展开更多
关键词 深度学习 卷积神经网络 图像识别 破碎玉米籽粒 轻量化 SqueezeNet
在线阅读 下载PDF
基于卷积神经网络轻量化的改进SSD异纤检测方法
7
作者 胡胜 王紫悦 +3 位作者 张守京 李博豪 赵小惠 刘文慧 《计算机集成制造系统》 北大核心 2025年第1期171-181,共11页
精准检测棉花中混杂的小型异纤是保障纱线与织物质量的基础和关键。针对现有算法在棉花小型异纤检测中存在的漏检率高、网络结构复杂等问题,提出一种基于卷积神经网络轻量化的改进单步多框检测器(SSD)的棉花异纤检测方法。首先,通过引... 精准检测棉花中混杂的小型异纤是保障纱线与织物质量的基础和关键。针对现有算法在棉花小型异纤检测中存在的漏检率高、网络结构复杂等问题,提出一种基于卷积神经网络轻量化的改进单步多框检测器(SSD)的棉花异纤检测方法。首先,通过引入深度可分离卷积、倒残差结构等创新性设计,将SSD算法中原有骨干特征提取网络VGGNet16替换为MobileNetv2网络;然后,对于SSD算法中生成的候选框尺寸与棉花异纤大小不匹配导致棉花背景占比过高,从而引起正负样本不均衡的问题,采用K-means++算法对棉花异纤尺寸进行聚类分析,根据聚类结果修正候选框尺寸。通过算例进行验证,结果显示所提方法在实现模型轻量化的同时有效提升了异纤检测效果和计算效率。 展开更多
关键词 异纤检测 改进SSD 卷积神经网络 K-means++聚类 轻量化
在线阅读 下载PDF
多尺度深层特征蒸馏的图像超分辨率重建
8
作者 李想 熊凌 +1 位作者 叶道辉 李姝凡 《光学精密工程》 北大核心 2025年第10期1657-1671,共15页
针对现有的超分辨率重建算法难以充分利用图像的多尺度信息和深层特征的问题,提出了多尺度深层特征蒸馏的图像超分辨率重建方法(MSDFDN)。首先,采用ConvNeXt卷积替代传统卷积层,以较小的计算成本来增加网络的深度,从而提高网络的性能;其... 针对现有的超分辨率重建算法难以充分利用图像的多尺度信息和深层特征的问题,提出了多尺度深层特征蒸馏的图像超分辨率重建方法(MSDFDN)。首先,采用ConvNeXt卷积替代传统卷积层,以较小的计算成本来增加网络的深度,从而提高网络的性能;其次,设计了多尺度深层特征蒸馏模块,通过构造不同尺度的ConvNeXt卷积层,结合残差特征蒸馏机制,绕过丰富的低频信息,提取残差块中的多尺度深层特征;最后,在模块的末端引入注意力机制,自适应地对提取的特征进行加权,使网络更加关注高频信息。在基准数据集以及自建PDC钻头复合片数据集上,与其他先进的轻量级超分辨率重建算法进行对比,本文方法所得图像的峰值信噪比和结构相似性定量数据均有提升,尤其在细节信息较多的Urban100数据集上4倍重建图像的峰值信噪比达到了26.49 dB,结构相似性达到了0.7976。实验结果表明所提出方法具有更好的客观和主观度量结果。 展开更多
关键词 图像超分辨率重建 卷积神经网络 轻量级 多尺度特征蒸馏 注意力机制
在线阅读 下载PDF
基于注意力机制的端到端轻量化星图识别算法研究
9
作者 伊国胜 杨翰文 +3 位作者 司文杰 李冰 王彦博 韩春晓 《天津大学学报(自然科学与工程技术版)》 北大核心 2025年第3期247-259,共13页
星敏感器在航天任务中通过对恒星进行识别以实现姿态测量,而星图识别算法作为其核心部分决定着星敏感器姿态定位的性能.针对现有的基于神经网络的星图识别算法难以在保证识别准确率的同时限制计算成本的问题,提出了一种基于注意力机制... 星敏感器在航天任务中通过对恒星进行识别以实现姿态测量,而星图识别算法作为其核心部分决定着星敏感器姿态定位的性能.针对现有的基于神经网络的星图识别算法难以在保证识别准确率的同时限制计算成本的问题,提出了一种基于注意力机制端到端轻量化网络MobileCiT的星图识别算法,用于直接识别星敏感器中的含噪声星图.MobileCiT在卷积神经网络的基础上采用深度可分离卷积和改进前置倒残差结构以实现星图识别算法的轻量化,同时引入注意力机制以重点关注星点位置信息.此外,由于实拍星图的成本高,噪声不可控,采用基于小孔成像的坐标映射模型以生成含噪声的仿真星图训练集与测试集.实验结果表明,MobileCiT对含不同噪声星图的识别准确率为99.850%,高于现有的基于轻量化网络MobileNet和MobileViT的星图识别算法,对位置噪声、星等噪声、假星和缺失星均具有良好的鲁棒性,能够在无需背景去噪、连通域检测、星点质心提取等预处理操作的情况下实现高精度的星图识别.MobileCiT在提升识别精度的同时具有较低的计算成本,计算量仅为基于MobileViT网络算法的1/3.在此基础上,将MobileCiT与基于子图同构的星图识别算法和基于模式识别的星图识别算法进行对比.在相同的视场范围与噪声条件下,MobileCiT依旧表现出了更高的识别准确率与更强的鲁棒性,这进一步验证了MobileCiT相对于传统星图识别算法的先进性. 展开更多
关键词 星图识别 注意力机制 轻量化 星图仿真 卷积神经网络 噪声鲁棒性
在线阅读 下载PDF
基于图像分析的电能质量扰动边-云协同辨识框架
10
作者 张玺 郑建勇 +2 位作者 梅飞 高昂 缪惠宇 《中国电机工程学报》 北大核心 2025年第12期4593-4607,I0005,共16页
随着分布式源荷渗透率的提高,传感器监测数据呈海量增长,电网运维服务对于电能质量数据分析提出了快速响应需求。为实现快速响应和高精度的电能质量扰动(power quality disturbances,PQDs)辨识服务,该文提出一种基于图像分析的PQDs边-... 随着分布式源荷渗透率的提高,传感器监测数据呈海量增长,电网运维服务对于电能质量数据分析提出了快速响应需求。为实现快速响应和高精度的电能质量扰动(power quality disturbances,PQDs)辨识服务,该文提出一种基于图像分析的PQDs边-云协同辨识框架。借助图像分析领域最新进展,提出双相Lissajous轨迹(double-phase Lissajous locus,DPLL)概念,将PQDs信号转换成具有特殊形状的轨迹图像。在边缘和云部署相同结构的轻量级卷积神经网络(convolutional neural network,CNN),分别执行快速响应和训练任务。通过边-云共享模型权重,该框架能够实现快速、高精度的PQDs辨识。为持续提升模型性能,设计一个深层CNN部署至云端进行数据标记以辅助模型更新。实验结果表明,该框架能够提供精度更高的PQDs辨识,且满足工程实际中的实时响应需求。 展开更多
关键词 边-云协同 电能质量扰动 双相Lissajous轨迹 轻量级卷积神经网络 图像识别
在线阅读 下载PDF
基于深度可分离卷积与注意力机制的单导联心房颤动轻量级分类网络
11
作者 洪永 张鑫 +2 位作者 林铭俊 吴秋岑 陈超敏 《南方医科大学学报》 北大核心 2025年第3期650-660,共11页
目的设计一个深度学习模型,实现模型复杂度和模型性能的平衡,以便于集成到可穿戴心电监护设备上,实现本地的房颤自动诊断。方法从公开数据集LTAFDB、AFDB和NSRDB上分别收集了84例、25例房颤患者和18例无明显心律失常受试者的数据进行实... 目的设计一个深度学习模型,实现模型复杂度和模型性能的平衡,以便于集成到可穿戴心电监护设备上,实现本地的房颤自动诊断。方法从公开数据集LTAFDB、AFDB和NSRDB上分别收集了84例、25例房颤患者和18例无明显心律失常受试者的数据进行实验和测试。提出了一个基于深度可分离卷积并融合通道空间信息的轻量级注意网络—DSC-AttNet,引入深度可分离卷积代替标准卷积,降低模型参数量和计算量,实现模型的高效和轻量化;并嵌入多层混合注意力机制以在不同尺度上计算通道信息和空间信息的注意权重,提高模型的特征表达能力。在LTAFDB上进行十折交叉验证,并在AFDB和NSRDB上进行外部独立测试。结果DSC-AttNet在测试集上的十折平均准确率达到97.33%,精确率达到97.30%,均优于其他4个对比模型以及3个经典模型。模型在外部测试集上的准确率分别达到92.78%和99.97%,优于3个经典模型。且DSC-AttNet的参数量为1.01M,计算量为27.19 G,小于3个经典模型。结论该房颤分类方法具有较小的复杂度,达到了更好的分类性能,并且泛化能力较好,具有良好的临床应用前景和推广能力。 展开更多
关键词 心电图 心房颤动 卷积块注意模块 MobileNet 轻量级卷积神经网络
在线阅读 下载PDF
采用轻量级卷积神经网络的H.266/通用视频编码跨分量预测
12
作者 邹承益 万帅 +1 位作者 朱志伟 尹宇杰 《西安交通大学学报》 北大核心 2025年第2期180-188,共9页
为提高新一代通用视频编码标准(H.266/VVC)中色度帧内预测的准确度,提出了采用轻量级卷积神经网络的跨分量预测方法。设计了亮度模块和边界模块,从亮度和色度参考样本中提取特征。设计了注意力模块,构建当前亮度参考样本和边界亮度参考... 为提高新一代通用视频编码标准(H.266/VVC)中色度帧内预测的准确度,提出了采用轻量级卷积神经网络的跨分量预测方法。设计了亮度模块和边界模块,从亮度和色度参考样本中提取特征。设计了注意力模块,构建当前亮度参考样本和边界亮度参考样本之间的空间关系,并应用于边界色度参考样本生成色度预测样本。为降低编解码复杂度,设计网络在二维完成特征融合和预测,优化了现有的同组参数处理不同块大小的训练策略。并且,引入宽度可变卷积,根据不同的块大小调整网络参数。实验结果表明:与H.266/VVC测试模型VTM18.0相比,所提网络在Y(亮度分量)、Cb(蓝色色度分量)、Cr(红色色度分量)上分别实现了0.30%、2.46%、2.25%的码率节省。与其他基于卷积神经网络的跨分量预测方法相比,有效地降低了网络参数和推理复杂度,分别节省了约10%的编码时间和19%的解码时间。 展开更多
关键词 通用视频编码 跨分量预测 轻量级卷积神经网络 注意力机制 宽度可变卷积
在线阅读 下载PDF
基于改进轻量化神经网络的干扰识别方法
13
作者 付亦凡 阮航 +1 位作者 周东平 穆贺强 《现代防御技术》 北大核心 2025年第2期91-98,共8页
针对战场实战电磁对抗作战中,大量雷达干扰信号可以被简单迅速地生成,使用传统卷积神经网络对雷达干扰进行识别存在规模大,难以在小型化装备上搭载的问题。提出一种改进的轻量化卷积神经网络,通过在传统神经网络中使用动态卷积核尺寸技... 针对战场实战电磁对抗作战中,大量雷达干扰信号可以被简单迅速地生成,使用传统卷积神经网络对雷达干扰进行识别存在规模大,难以在小型化装备上搭载的问题。提出一种改进的轻量化卷积神经网络,通过在传统神经网络中使用动态卷积核尺寸技术并添加批量归一化层技术,提高网络的识别效能。通过提取干扰信号时频特征,构建训练集与测试集对网络进行训练。仿真实验表明,该网络对6种干扰信号在-8 dB干噪比条件下识别准确率达到96%以上,对比其他网络具有更好的识别准确效能。 展开更多
关键词 雷达有源干扰 卷积神经网络 轻量化 动态卷积核 特征提取
在线阅读 下载PDF
基于多粒度时空注意力机制的说话人识别模型
14
作者 朱文博 吴靖 +2 位作者 金浩 叶维彰 朱珍 《声学技术》 北大核心 2025年第1期93-101,共9页
深度学习已广泛应用在说话人识别领域,但当前模型存在识别率低和模型参数复杂度高的问题,难以进行轻量化语音识别。针对此问题,文章提出一种基于多粒度时空注意力机制的说话人识别模型,该模型由多粒度混合模块、时空注意力机制模块、通... 深度学习已广泛应用在说话人识别领域,但当前模型存在识别率低和模型参数复杂度高的问题,难以进行轻量化语音识别。针对此问题,文章提出一种基于多粒度时空注意力机制的说话人识别模型,该模型由多粒度混合模块、时空注意力机制模块、通道压缩模块组成。其中多粒度混合模块和时空注意力机制模块以多尺度建模角度来捕捉局部时序上下文特征和空间关联特征信息,并通过多粒度方式耦合不同时空信息的关联特征以提高全局时空建模能力。同时,通道压缩模块通过聚合不同说话人信道以及上下文语境依赖表征以减少整体模型参数数量。在多组公开数据集上进行五重交叉验证实验,结果表明:对比主流模型,所提方法能够有效地提高说话人识别准确率、降低参数量,并达到最优的表现,在轻量化说话人识别模型方面具有重要的应用价值。 展开更多
关键词 深度学习 卷积神经网络 说话人识别 注意力机制 轻量化模型
在线阅读 下载PDF
基于轻量级卷积神经网络的多模态生物特征识别系统设计
15
作者 刘丰华 马秋平 +1 位作者 张琪 王财勇 《科学技术与工程》 北大核心 2025年第11期4673-4681,共9页
为了解决单模态生物特征信息采集不全、易被攻击以及特定识别场景下受限等问题,构建了一个针对人脸和虹膜的多层次融合识别模型,设计并实现多模态生物特征识别系统将所提模型以模块的方式进行集成。所提模型使用轻量级卷积神经网络作为... 为了解决单模态生物特征信息采集不全、易被攻击以及特定识别场景下受限等问题,构建了一个针对人脸和虹膜的多层次融合识别模型,设计并实现多模态生物特征识别系统将所提模型以模块的方式进行集成。所提模型使用轻量级卷积神经网络作为特征提取器,在特征层利用不同模态特征之间的类内相关性,对不同模态的特征归一化后串联;在分数层使用最小值策略融合左右虹膜得分,使用平均值策略融合虹膜得分和人脸得分。从CASIA-IrisV4-Distance数据集中提取同源多模态数据集进行实验验证,特征层融合算法和分数层融合算法准确率均达到99.8%。实验表明,该系统具有鲁棒性和泛化性。 展开更多
关键词 生物特征识别 多模态融合 系统设计 轻量级卷积神经网络
在线阅读 下载PDF
面向物联网边缘的轻量化DDoS攻击检测方法
16
作者 唐亚东 程光 赵玉宇 《小型微型计算机系统》 北大核心 2025年第4期940-947,共8页
物联网(Internet of Things,IoT)技术的发展给工业界和日常生活带来便利的同时,海量易受到各种攻击和破坏的IoT设备也降低了分布式拒绝服务(Distributed Denial of Service,DDoS)攻击发起的成本,使被攻击方无法响应正常用户访问.为了在... 物联网(Internet of Things,IoT)技术的发展给工业界和日常生活带来便利的同时,海量易受到各种攻击和破坏的IoT设备也降低了分布式拒绝服务(Distributed Denial of Service,DDoS)攻击发起的成本,使被攻击方无法响应正常用户访问.为了在物联网边缘中快速、准确地完成DDoS攻击检测,弥补现有方法资源开销大、不精确的缺陷,本文提出了一种基于轻量化卷积神经网络(Lightweight Convolutional Neural Networks,LCNN)的DDoS检测方法.面向物联网流量特性,方法首先提取包级特征和经冗余分析筛选得到的流级特征.之后设计了低参数和运算量的卷积神经网络LCNN,最后基于变维后的特征,快速检测定位攻击.实验结果表明,方法检测准确率达99.4%.同时LCNN在FPGA中能够以较少的资源消耗,保证在1ms时间内完成对一条流的推理判断. 展开更多
关键词 物联网边缘 可编程交换机 轻量化卷积神经网络 特征选择 DDOS检测
在线阅读 下载PDF
面向轻量卷积神经网络的训练后量化方法
17
作者 杨杰 李琮 +3 位作者 胡庆浩 陈显达 王云鹏 刘晓晶 《图学学报》 北大核心 2025年第4期709-718,共10页
当前训练后量化方法(post-training quantization)在高比特量化位宽下可以实现精度近乎无损的量化,但对于轻量卷积神经网络(CNN)来说,其量化误差仍然不可忽视,特别是低位宽(<4比特)量化的情况。针对该问题,提出了一种面向轻量CNN的... 当前训练后量化方法(post-training quantization)在高比特量化位宽下可以实现精度近乎无损的量化,但对于轻量卷积神经网络(CNN)来说,其量化误差仍然不可忽视,特别是低位宽(<4比特)量化的情况。针对该问题,提出了一种面向轻量CNN的训练后量化方法,即块级批归一化学习(BBL)方法。不同于当前训练后量化方法合并批归一化层的方式,该方法以模型块为单位保留批归一化层的权重,基于块级特征图重建损失对模型量化参数和批归一化层的参数进行学习,且更新批归一化层的均值和方差等统计量,以一种简单且有效的方式缓解了轻量CNN在低比特量化时产生的分布漂移问题。其次,为了降低训练后量化方法对校准数据集的过拟合,构建了块级的数据增强方法,避免不同模型块对同一批校准数据进行学习。并在ImageNet数据集上进行了实验验证,实验结果表明,相比于当前训练后量化算法,BBL方法识别精度最高能提升7.72个百分点,并有效减少轻量CNN在低比特训练后量化时产生的量化误差。 展开更多
关键词 深度神经网络压缩 训练后量化 低比特量化 轻量卷积神经网络 轻量化智能
在线阅读 下载PDF
一种高效轻量级网络的低截获概率雷达信号脉内调制识别
18
作者 王旭东 吴嘉欣 陈斌斌 《电子与信息学报》 北大核心 2025年第6期1782-1791,共10页
针对低信噪比(SNRs)下低截获概率(LPI)雷达脉内波形识别准确率低的问题,该文提出一种基于时频分析(TFA)、混合扩张卷积(HDC)、卷积块注意力模块(CBAM)和GhostNet网络的LPI雷达辐射源信号识别方法,旨在提升LPI雷达信号的识别性能。该方... 针对低信噪比(SNRs)下低截获概率(LPI)雷达脉内波形识别准确率低的问题,该文提出一种基于时频分析(TFA)、混合扩张卷积(HDC)、卷积块注意力模块(CBAM)和GhostNet网络的LPI雷达辐射源信号识别方法,旨在提升LPI雷达信号的识别性能。该方法先从信号预处理角度给出一种适合LPI雷达信号的时频图像增强处理方法,并基于双时频特征融合技术,有效提升了后续网络对LPI雷达信号脉内调制的识别准确率。接着改造了一种高效轻量级网络,用于对LPI雷达脉内调制信号识别,该网络在GhostNet基础上,结合HDC和CBAM,形成了改进型GhostNet,扩大了特征图的感受野并增强了网络获取通道和位置信息的能力。仿真结果表明,在–8 dB信噪比下,该方法的雷达信号识别准确率依然能够达到98.98%,并在参数数量上也优于对比网络。该文所提方法在低信噪比环境下显著提高了LPI雷达脉内波形识别的准确率,为LPI雷达信号识别领域提供了新的技术途径。 展开更多
关键词 低截获概率雷达信号 脉内调制识别 时频分析 注意力机制 轻量级卷积神经网络
在线阅读 下载PDF
结合CWT和LightweightNet的滚动轴承实时故障诊断方法 被引量:6
19
作者 李飞龙 和伟辉 +1 位作者 刘立芳 齐小刚 《智能系统学报》 CSCD 北大核心 2023年第3期496-505,共10页
针对普通的深度学习算法用于轴承故诊断分类时计算量大、消耗成本高的问题,提出一种结合连续小波变换和轻量级神经网络的滚动轴承实时故障诊断方法。首先,使用Morlet母小波函数对轴承振动加速度数据进行连续小波变换,提取出时频域特征... 针对普通的深度学习算法用于轴承故诊断分类时计算量大、消耗成本高的问题,提出一种结合连续小波变换和轻量级神经网络的滚动轴承实时故障诊断方法。首先,使用Morlet母小波函数对轴承振动加速度数据进行连续小波变换,提取出时频域特征并将一维信号转换成二维图片;然后,结合分组卷积、通道混洗、倒残差结构等轻量级神经网络设计元素设计一个轻量级卷积神经网络LightweightNet用于时频图片的故障分类,LightweightNet网络在保证具有足够特征提取能力的同时还具有轻量级特点。使用凯斯西储大学轴承故障数据集进行实验表明,本方法相比于其他使用经典轻量级神经网络的方法具有更少的参数、最高的准确率和更快的诊断速度,基本可以实现滚动轴承的实时故障诊断,且在内存消耗与模型存储占用空间方面远小于其他同类方法。 展开更多
关键词 滚动轴承 故障诊断 连续小波变换 时频域特征 轻量级神经网络 分组卷积 通道混洗 倒残差结构
在线阅读 下载PDF
基于轻量级密集多尺度注意力网络的小麦叶部锈病识别方法 被引量:1
20
作者 鲍文霞 赵诗意 +2 位作者 黄林生 梁栋 胡根生 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期21-31,共11页
人工诊断小麦锈病成本高、效率低,已无法满足现代农业生产的需要。本文提出了一种轻量级密集多尺度注意力网络模型(Mobile-Dense multi-scale attention net,Mobile-DMSANet),用于自动识别田间自然场景中的小麦叶部锈病(条锈病和叶锈病... 人工诊断小麦锈病成本高、效率低,已无法满足现代农业生产的需要。本文提出了一种轻量级密集多尺度注意力网络模型(Mobile-Dense multi-scale attention net,Mobile-DMSANet),用于自动识别田间自然场景中的小麦叶部锈病(条锈病和叶锈病)。该模型在输入层设计了一个快速下采样模块(Fast subsampling block,FSB),它在不增加计算成本的前提下提高模型的特征表达能力。模型的特征提取层使用3个轻量级特征提取模块(Dense multiscale attention,DMS A)来提取小麦叶部锈病的特征。DMS A模块设计了一个多尺度的3路卷积层(Multi-scale threeway convolution,MSTC)用于获得不同尺度感受野,以提高模型的表达能力和对不同尺寸锈病的感知能力。DMSA模块中6个MSTC层通过密集连接实现特征重用,不仅大大减少了模型的参数量,而且提高了对这两种相似的小麦叶部锈病的特征提取能力。在DMSA模块中还引入了协调注意力机制(Coordinated attention,CA),来提高对病害信息的敏感性,并抑制图像中的背景信息。模型的输出层使用Softmax函数实现小麦叶部锈病识别。结果表明,Mobile-DMSANet模型在测试数据集上的识别准确率为96.4%,高于经典CNN模型(如ResNet50、AlexNet)和轻量级CNN模型(如ShufflenetV2、DenseNet系列)。Mobile-DMSANet参数量为4.54×10^(5),与其他轻量级模型相比大幅下降。本文所设计模型可用于移动端小麦叶部锈病的自动识别。 展开更多
关键词 小麦条锈病 小麦叶锈病 病害识别 轻量级卷积神经网络 Molile-DMSANet
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部