期刊文献+
共找到765篇文章
< 1 2 39 >
每页显示 20 50 100
Multisensor image fusion algorithm using nonseparable wavelet frame transform 被引量:1
1
作者 Li Zhenhua Jing Zhongliang Wang Hong Sun Shaoyuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期728-732,共5页
A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coef... A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion. 展开更多
关键词 MULTISENSOR image fusion image processing nonseparable wavelet frame transform.
在线阅读 下载PDF
基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法
2
作者 李海燕 乔仁超 +1 位作者 李海江 陈泉 《东北大学学报(自然科学版)》 北大核心 2025年第1期26-34,共9页
为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均... 为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均匀雾区的细节特征,设计跨维度通道空间注意力优化信息权重.然后,提出全局建模Transformer模块加深编码器的特征提取过程,设计带有并行卷积的Swin Transformer捕捉特征之间的依赖关系.最后,设计门控特征融合解码模块复用图像重建所需的纹理信息,滤除不相关的雾噪声,提高去雾性能.在4个公开数据集上进行定性和定量实验,实验结果表明:所提算法能够有效地处理非均匀雾区域,重建纹理细腻且语义丰富的高保真无雾图像,其峰值信噪比和结构相似性指数都优于经典对比算法. 展开更多
关键词 图像去雾 全局残差注意力机制 CNN-transformer架构 门控特征融合 图像重建
在线阅读 下载PDF
Image Fusion Algorithm Based on Spatial Frequency-Motivated Pulse Coupled Neural Networks in Nonsubsampled Contourlet Transform Domain 被引量:122
3
作者 QU Xiao-Bo YAN Jing-Wen +1 位作者 XIAO Hong-Zhi ZHU Zi-Qian 《自动化学报》 EI CSCD 北大核心 2008年第12期1508-1514,共7页
Nonsubsampled contourlet 变换(NSCT ) 为图象提供灵活 multiresolution, anisotropy,和方向性的扩大。与原来的 contourlet 变换相比,它是移动不变的并且能在奇特附近克服 pseudo-Gibbs 现象。脉搏联合了神经网络(PCNN ) 是一个视... Nonsubsampled contourlet 变换(NSCT ) 为图象提供灵活 multiresolution, anisotropy,和方向性的扩大。与原来的 contourlet 变换相比,它是移动不变的并且能在奇特附近克服 pseudo-Gibbs 现象。脉搏联合了神经网络(PCNN ) 是一个视觉启发外皮的神经网络并且由全球联合和神经原的脉搏同步描绘。它为图象处理被证明合适并且成功地在图象熔化采用。在这份报纸, NSCT 与 PCNN 被联系并且在图象熔化使用了充分利用他们的特征。在 NSCT 领域的空间频率是输入与大开火的时间在 NSCT 领域激发 PCNN 和系数作为熔化图象的系数被选择。试验性的结果证明建议算法超过典型基于小浪,基于 contourlet,基于 PCNN,并且 contourlet-PCNN-based 熔化算法以客观标准和视觉外观。 展开更多
关键词 图像融合算法 空间频率 脉冲耦合神经网络 变换域 自动化系统
在线阅读 下载PDF
基于渐进式多尺度Transformer的图像去雾算法 被引量:1
4
作者 周宇 陈志华 +1 位作者 盛斌 梁磊 《计算机科学》 CSCD 北大核心 2024年第5期117-124,共8页
现有的去雾方法难以在复原图像细节的同时保持全局信息。为了解决此问题,文中提出了一种基于渐进式多尺度Transformer(Multi Scale Progressive Transformer,MSP-Transformer)的图像去雾算法。该模型能够有效提取和利用不同尺度的雾相... 现有的去雾方法难以在复原图像细节的同时保持全局信息。为了解决此问题,文中提出了一种基于渐进式多尺度Transformer(Multi Scale Progressive Transformer,MSP-Transformer)的图像去雾算法。该模型能够有效提取和利用不同尺度的雾相关特征,实现了特征和图像的多尺度学习和融合,渐进式地从有雾图像中复原清晰图像。所提出的MSP-Transformer分为编码、解码和复原3个阶段。在编码阶段,利用基于Transformer模块的编码器将输入图像分解为不同尺度的雾图像特征,以全面表征真实有雾图像的信息损失。在解码阶段,考虑到有雾图像的不同区域存在不同尺度的信息丢失,设计了一个包含多尺度注意力机制的特征聚合模块,利用通道注意力和多尺度空间注意力来融合不同尺度的特征信息。复原阶段包含了复原模块和融合模块,首先基于多尺度特征融合的复原模块聚合不同尺度的雾相关特征以增加不同尺度特征的联系,并在每个尺度复原出清晰的无雾图像,然后将每个尺度的复原图像送入融合模块以获得最终的去雾结果。定性和定量的实验结果表明,所提出的MSP-Transformer在真实图像和合成数据集上能够实现雾的有效去除,具有良好的鲁棒性。在公开的RESIDE数据集上与11种去雾方法进行定量和定性比较,MSP-Transformer取得了最高的PSNR(39.53db)和SSIM(0.9954),并获得了良好的视觉效果。此外,消融实验也证明了MSP-Transformer中所提出的模块的有效性。 展开更多
关键词 图像去雾 多尺度 transformER 注意力机制 特征融合
在线阅读 下载PDF
基于混合差分卷积和高效视觉Transformer网络的三重多模态图像融合算法 被引量:1
5
作者 司坤宇 牛春晖 《红外与激光工程》 EI CSCD 北大核心 2024年第11期322-336,共15页
提出了一种创新的三重多模态红外和可见图像融合算法,以解决传统卷积运算在全局特征捕捉和长程相关性分析方面的不足。该算法的核心创新包括:首先,在输入端引入差分图像,通过像素值相减突出图像间差异,构建三重输入网络架构,增强图像特... 提出了一种创新的三重多模态红外和可见图像融合算法,以解决传统卷积运算在全局特征捕捉和长程相关性分析方面的不足。该算法的核心创新包括:首先,在输入端引入差分图像,通过像素值相减突出图像间差异,构建三重输入网络架构,增强图像特征的区分度。其次,设计了混合差分卷积(Mixed difference convolution,MDconv),一种传统卷积的变体,结合边缘检测算子,利用像素差分原理,提升卷积运算的特征学习能力;进一步地,采用双分支编码器结构,结合密集混合差分卷积的卷积神经网络分支和高效视觉Transformer(Efficient Vision Trasnsformer,EfficientViT)分支,分别提取图像的局部细节和全局背景,实现对局部与全局特征的全面捕捉;最后,采用多维坐标协同注意力融合策略,在融合层有效整合编码器输出的多模态图像特征。在公开数据集上的定性和定量实验表明,采用文中算法进行红外和可见融合后图像具有背景纹理细节清晰、热辐射目标更显著等明显优势,并在四项客观评价指标MI、VIF、SD、QAB/F分别达到最优值,在SF指标上取得次优值。消融实验也证明了文中所提各个模块的有效性。 展开更多
关键词 差分卷积 高效视觉transformer 注意力机制 图像融合 红外与可见光图像
在线阅读 下载PDF
小波分频自注意力Transformer图像去雨网络 被引量:3
6
作者 方思严 刘斌 《计算机工程与应用》 CSCD 北大核心 2024年第6期259-273,共15页
针对视觉Transformer对高频信息捕捉能力弱以及目前许多图像去雨方法易丢失细节的问题,提出小波分频自注意力Transformer图像去雨网络(WFDST-Net)。小波分频自注意力Transformer(WFDST)作为WFDST-Net的主要模块,其利用不可分提升小波变... 针对视觉Transformer对高频信息捕捉能力弱以及目前许多图像去雨方法易丢失细节的问题,提出小波分频自注意力Transformer图像去雨网络(WFDST-Net)。小波分频自注意力Transformer(WFDST)作为WFDST-Net的主要模块,其利用不可分提升小波变换获取特征图的低频分量和高频分量,分别在低频和高频中进行自注意力交互,使模块从低频中学习恢复全局结构的能力,在高频中强化捕捉雨纹等线条细节的能力,增强对不同频域特征的建模能力。WFDST-Net采用U形架构并通过不可分提升小波变换获取多尺度特征,可在捕获不同形状高频雨纹的同时保证信息的完整性。相比其他图像去雨相关的Transformer,WFDST-Net具有更低的参数量。此外,提出VOCRain250数据集用于联合图像去雨和语义分割任务,该数据集比目前广泛使用的BDD150更具优势。实验表明,所提方法增强了视觉Transformer对不同频域信息的捕获能力,并在合成和真实数据集以及VOCRain250中的表现优于目前先进的去雨方法,能有效去除复杂雨纹并保留更多细节特征。 展开更多
关键词 图像去雨 transformER 自注意力 不可分提升小波 频域
在线阅读 下载PDF
位置敏感Transformer航拍图像目标检测模型
7
作者 李大湘 辛嘉妮 刘颖 《光学精密工程》 EI CAS CSCD 北大核心 2024年第5期727-739,共13页
针对无人机视角下航拍图像小目标多且检测困难的问题,提出了一个位置敏感Transformer目标检测(PS-TOD)模型。设计了一个基于位置通道嵌入三维注意力(PCE3DA)的多尺度特征融合(MSFF)模块,即PCE3DA利用空间与通道信息的相互依赖关系生成... 针对无人机视角下航拍图像小目标多且检测困难的问题,提出了一个位置敏感Transformer目标检测(PS-TOD)模型。设计了一个基于位置通道嵌入三维注意力(PCE3DA)的多尺度特征融合(MSFF)模块,即PCE3DA利用空间与通道信息的相互依赖关系生成三维注意力,用于加强模型对兴趣区域的特征表达能力,且基于它构造了一个自底向上的跨层MSFF方案,使得融合后的特征语义信息更加丰富;然后,设计了一种新的位置敏感自注意力(PSSA)机制,且以此构造位置敏感Transformer编-解码器,使模型在捕获图像全局上下文信息的长期依赖关系时,也可提高模型对目标的位置敏感能力。基于无人机航拍数据集VisDrone的对比实验结果表明,提出模型的AP达到28.8%,与基线模型(DETR)相比提高了4.1%。该模型在复杂背景下能对无人机航拍图像进行精确的目标检测,且改善小目标的检测效果。 展开更多
关键词 目标检测 无人机图像 位置敏感transformer 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于分频式生成对抗网络的非成对水下图像增强
8
作者 牛玉贞 张凌昕 +2 位作者 兰杰 许瑞 柯逍 《电子学报》 北大核心 2025年第2期527-544,共18页
增强水下图像质量对水下作业领域的发展具有重要意义.现有的水下图像增强方法通常基于成对的水下图像和参考图像进行训练,然而实际获取与水下图像对应的参考图像比较困难,相比之下获得非成对高质量水下图像或者陆上图像较为容易.此外,... 增强水下图像质量对水下作业领域的发展具有重要意义.现有的水下图像增强方法通常基于成对的水下图像和参考图像进行训练,然而实际获取与水下图像对应的参考图像比较困难,相比之下获得非成对高质量水下图像或者陆上图像较为容易.此外,现有的水下图像增强方法很难同时针对各种失真类型进行图像增强.为了避免对成对训练数据的依赖和进一步降低获得训练数据的难度,并应对多样的水下图像失真类型,本文提出了一种基于分频式生成对抗网络(Frequency-Decomposed Generative Adversarial Network,FD-GAN)的非成对水下图像增强方法,并在此基础上设计了高低频双分支生成器用于重建高质量水下增强图像.具体来说,本文引入特征级别的小波变换将特征分为低频和高频部分,并基于循环一致性生成对抗网络对低频和高频部分区分处理.其中,低频分支采用结合低频注意力机制的编码-解码器结构实现对图像颜色和亮度的增强,高频分支则采用并行的高频注意力机制对各高频分量进行增强,从而实现对图像细节的恢复.在多个标准水下图像数据集上的实验结果表明,本文提出的方法在使用非成对的高质量水下图像和引入部分陆上图像的情况下,均能有效生成高质量的水下增强图像,且有效性和泛化性均优于当前主流的水下图像增强方法. 展开更多
关键词 水下图像增强 生成对抗网络 小波变换 注意力机制 高低频双分支生成器
在线阅读 下载PDF
知识迁移引导的空频双域联合去雾网络
9
作者 杨燕 梁皓博 林雷 《湖南大学学报(自然科学版)》 北大核心 2025年第4期16-26,共11页
目前一些基于CNN的方法在去雾方面有着不错的性能,但网络鲁棒性欠佳.这主要归因于雾霾分布复杂和数据集难以收集,导致去雾过程中纹理细节丢失严重并且在小规模数据集上存在严重的过拟合问题.为了解决上述问题,提出了空频联合的双分支结... 目前一些基于CNN的方法在去雾方面有着不错的性能,但网络鲁棒性欠佳.这主要归因于雾霾分布复杂和数据集难以收集,导致去雾过程中纹理细节丢失严重并且在小规模数据集上存在严重的过拟合问题.为了解决上述问题,提出了空频联合的双分支结构.上分支捕获更多的纹理细节,利用三级小波变换在频域中获取特征;下分支提升网络泛化能力,采用域迁移方法在空域中提供额外的知识先验,以Res2Net作为该分支的核心部分.最后,本文在NH-HAZE数据集上对模型进行训练,在I-HAZE和NTIRE 2023数据集上进行泛化能力测试.此外,为了保证实验的公平性,本文对所有对比算法也采用NH-HAZE数据集进行训练.实验结果表明,本文网络在细节纹理恢复和泛化能力方面获得了显著提升. 展开更多
关键词 图像去雾 域迁移 小波变换 注意力机制 深度学习
在线阅读 下载PDF
用于动态场景高动态范围成像的局部熵引导的双分支网络
10
作者 黄颖 李昌盛 +1 位作者 彭慧 刘苏 《计算机应用》 北大核心 2025年第1期204-213,共10页
针对基于多张曝光图像序列的高动态范围(HDR)成像任务在相机抖动或拍摄主体移动时出现运动伪影以及曝光失真的问题,提出一个用于动态场景HDR成像的局部熵引导的双分支网络。首先,利用离散小波变换(DWT)分离出输入图像的低频光照相关信... 针对基于多张曝光图像序列的高动态范围(HDR)成像任务在相机抖动或拍摄主体移动时出现运动伪影以及曝光失真的问题,提出一个用于动态场景HDR成像的局部熵引导的双分支网络。首先,利用离散小波变换(DWT)分离出输入图像的低频光照相关信息以及高频运动相关信息,以便于网络有针对性地处理曝光以及主体移动;其次,对于低频光照相关信息分支,设计一个利用图像局部熵计算注意力的模块来引导网络减少细节不足的曝光特征的提取;对于高频运动相关信息分支,引入一个轻量级的特征对齐模块来进行场景的一致性对齐,从而减少运动特征的提取;最后,结合通道注意力构建时域自注意力模块,从而加强曝光图像序列在时间域之间的相互依赖关系,以进一步提高结果质量。在公开数据集Kalantari、Sen、Tursun上进行评估。在Kalantari数据集上的实验结果表明,与最新的一些方法对比,所提网络以PSNR-l为42.20 dB的成绩取得第一,SSIM-l为0.988 9的成绩取得第三。结合其余数据集上的实验结果可知,所提网络可以有效减少曝光失真以及运动伪影,并生成细节多、视觉效果佳的图像。 展开更多
关键词 高动态范围成像 局部熵 注意力机制 离散小波变换 图像信息分离
在线阅读 下载PDF
基于二代curvelet与wavelet变换的自适应图像融合 被引量:6
11
作者 周爱平 梁久祯 《激光与红外》 CAS CSCD 北大核心 2010年第9期1010-1016,共7页
针对同一场景红外图像与可见光图像的融合问题,提出了一种基于二代curvelet与wavelet变换的自适应图像融合算法。首先对源图像进行快速离散curvelet变换,得到不同尺度与方向下的粗尺度系数和细尺度系数;根据红外图像与可见光图像的不同... 针对同一场景红外图像与可见光图像的融合问题,提出了一种基于二代curvelet与wavelet变换的自适应图像融合算法。首先对源图像进行快速离散curvelet变换,得到不同尺度与方向下的粗尺度系数和细尺度系数;根据红外图像与可见光图像的不同物理特性以及人类视觉系统特性,对不同尺度与方向下的粗尺度系数和细尺度系数采用基于离散小波变换的图像融合方法,在小波域中,对低频系数采用基于红外图像与可见光图像的不同物理特性的自适应融合规则,对高频系数采用基于邻域方向对比度与局部区域匹配度相结合的自适应融合规则,然后进行小波逆变换得到融合的curvelet系数;最后,进行快速离散curvelet逆变换得到融合图像。实验结果表明,该方法能够更加有效、准确地提取图像中的特征,是一种有效可行的图像融合算法。 展开更多
关键词 图像融合 CURVELET变换 wavelet变换 物理特性 方向对比度
在线阅读 下载PDF
基于小波变换和平行注意力的多源遥感图像分类
12
作者 王嘉毅 高峰 +1 位作者 张天戈 甘言海 《北京航空航天大学学报》 北大核心 2025年第7期2415-2422,共8页
充分挖掘多源遥感图像数据特征的依赖关系,实现不同模态图像数据间的优势互补,已成为遥感领域的研究热点方向之一。现有的高光谱和合成孔径雷达(SAR)数据联合分类任务存在图像特征提取和特征表达不充分的问题,高频信息容易损失,不利于... 充分挖掘多源遥感图像数据特征的依赖关系,实现不同模态图像数据间的优势互补,已成为遥感领域的研究热点方向之一。现有的高光谱和合成孔径雷达(SAR)数据联合分类任务存在图像特征提取和特征表达不充分的问题,高频信息容易损失,不利于后续的分类任务,以及多源图像特征交互有限,多模态特征关联不紧密的关键难题。针对上述问题,围绕图像特征的鲁棒表达和多源特征的高效关联开展研究,提出了基于小波变换和平行注意力机制的多源遥感图像分类网络(WPANet)。基于小波变换的特征提取器可以充分利用频域分析技术,在可逆下采样的过程中充分捕捉粗/细粒度级别特征;基于平行注意力机制的特征融合器充分综合多模态遥感数据的一致性和差异性,完成强相关性特征的融合和生成,以提升分类准确度。在Augsburg和Berlin这2个真实多源遥感数据集上的实验表明:所提分类方法具有显著优势,总体准确率分别达到90.40%和76.23%,相比于深度特征交互网络(DFINet)等主流方法,在2个数据集上的总体准确率分别至少提升2.66%和12.22%。 展开更多
关键词 高光谱图像 合成孔径雷达 小波变换 多源特征融合 遥感图像
在线阅读 下载PDF
基于边缘引导滤波增强和GWT的红外与微光图像融合
13
作者 盛志超 张昦润 王赫 《红外技术》 北大核心 2025年第7期793-801,共9页
图像融合是用特定的算法将两幅或多幅图像融合为一幅新的图像,用于提高图像的辨识度和细节丰富度。本文针对传统红外与微光图像融合方法出现细节缺失、边缘纹理不清晰等问题,提出了一种基于边缘引导滤波增强和图小波变换(Graph Wavelet ... 图像融合是用特定的算法将两幅或多幅图像融合为一幅新的图像,用于提高图像的辨识度和细节丰富度。本文针对传统红外与微光图像融合方法出现细节缺失、边缘纹理不清晰等问题,提出了一种基于边缘引导滤波增强和图小波变换(Graph Wavelet Transform,GWT)的图像融合算法。首先,使用边缘引导滤波对微光图像进行预处理增强。接着使用GWT对红外和微光图像分别进行多尺度分解,得到各自的低频子带图像和高频子带图像。对低频子图像,使用滚动引导滤波(Rolling Guidance Filtering,RGF)进行分解得到基础层和细节层,其中基础层利用视觉显著映射(Visual Saliency Map,VSM)进行融合,细节层利用最大绝对值原则(Max Absolute,MA)进行融合;对高频子图像,采用区域能量最大进行融合。最后,对融合后的低频和高频子带图像进行GWT反变换,得到最终的融合结果。在公开数据集上的实验结果表明,该方法表现出较好的主观视觉效果,优于所比较的其他算法,且保留了更多的纹理信息和边缘细节。 展开更多
关键词 图像融合 图小波变换 边缘引导滤波 滚动引导滤波
在线阅读 下载PDF
一种基于小波变换的两阶段低照度图像增强方法
14
作者 孙静 孙福奇 +1 位作者 郝世杰 孙福明 《计算机学报》 北大核心 2025年第5期1188-1211,共24页
低照度环境下采集的图像普遍存在亮度衰减、对比度弱化及细节模糊等退化现象,导致视觉质量显著降低,严重制约计算机视觉系统在目标检测、语义分割等高级视觉任务中的性能表现。针对上述问题,本文提出了一种基于小波变换的两阶段低照度... 低照度环境下采集的图像普遍存在亮度衰减、对比度弱化及细节模糊等退化现象,导致视觉质量显著降低,严重制约计算机视觉系统在目标检测、语义分割等高级视觉任务中的性能表现。针对上述问题,本文提出了一种基于小波变换的两阶段低照度图像增强网络TSUNet(Two-Stage Wavelet Recovery U-Net)。本文创新性地构建了基于小波变换理论的U型网络架构,通过初级恢复与精细增强两阶段的渐进式处理,分别实现基础特征重建和细节特征优化。为提升网络的特征表达能力,本文设计了增强小波域特征融合模块,该模块集成离散小波变换与逆变换操作,并设计了由动态门控空间注意力与轻量融合曲线注意力组成的双重注意力机制,通过双重注意力机制与小波变换协同工作,以更精细化的方式实现噪声抑制与细节增强的平衡。在优化策略方面,本文提出了融合感知损失函数,通过综合考量像素级误差与视觉感知质量,引导模型生成具有自然的视觉效果的高质量图像。实验结果表明,本文提出的方法在多个公开低照度数据集的关键指标(如峰值信噪比、结构相似性指数)中展现出出色的性能。代码已开源在https://github.com/HibobacX/TSUNet。 展开更多
关键词 图像增强 U型网络 小波变换 注意力机制 损失函数
在线阅读 下载PDF
基于特征对齐融合的双波段图像描述生成方法
15
作者 顾梦瑶 蔺素珍 +1 位作者 晋赞霞 李烽源 《现代电子技术》 北大核心 2025年第7期65-71,共7页
为了获得更准确、全面的现场信息,采用红外和可见光同步成像探测复杂场景已成为常态,但现有图像描述研究仍集中于可见光图像,无法全面而准确地描述已探测到的场景信息。为此,文中提出一种基于特征对齐融合的可见光⁃红外双波段图像描述... 为了获得更准确、全面的现场信息,采用红外和可见光同步成像探测复杂场景已成为常态,但现有图像描述研究仍集中于可见光图像,无法全面而准确地描述已探测到的场景信息。为此,文中提出一种基于特征对齐融合的可见光⁃红外双波段图像描述生成方法。首先,利用Faster⁃RCNN分别提取可见光图像的区域特征和红外图像的网格特征;其次,以Transformer为基本架构,在可见光⁃红外图像对齐融合(VIIAF)编码器中引入位置信息做桥接,进行可见光⁃红外图像特征的对齐与融合;接着,将融合得到的视觉信息输入Transformer解码器中得到粗粒度文本的隐藏状态;最后将编码器输出的视觉信息、解码器得到的隐藏状态与经训练的Bert输出的语言信息输入所设计的自适应模块,使视觉信息和语言信息参与文本预测,实现文本由粗到细的图像描述。在可见光图像⁃红外图像描述数据集上进行的多组实验表明:所提方法不仅能够精确捕捉到可见光和红外图像间的互补信息,而且与使用Transformer的最优模型相比,其性能在BLEU⁃1、BLEU⁃2、BLEU⁃3、BLEU⁃4、METROR、ROUGE以及CIDEr指标上分别提高1.9%、2.1%、2.0%、1.8%、1.3%、1.4%、4.4%。 展开更多
关键词 图像描述 双波段 特征对齐融合 注意力机制 transformER 语言模型 Bert 自适应
在线阅读 下载PDF
跨通道细粒度特征融合的矿石图像分类算法
16
作者 高云霏 吕伏 冯永安 《计算机工程与应用》 北大核心 2025年第10期214-227,共14页
为解决深度学习算法在处理细粒度纹理特征的矿石图像时准确率低、计算资源需求大且难以在移动端部署的问题,提出一种跨通道细粒度特征融合的轻量级矿石图像分类算法。通过交替使用CNN与Transformer构建混合网络,以有效提取图像局部与全... 为解决深度学习算法在处理细粒度纹理特征的矿石图像时准确率低、计算资源需求大且难以在移动端部署的问题,提出一种跨通道细粒度特征融合的轻量级矿石图像分类算法。通过交替使用CNN与Transformer构建混合网络,以有效提取图像局部与全局信息;引入跨通道细粒度特征融合模块作为特征融合器,采用通道分组和随机通道混洗的融合策略,增强矿石纹理信息的获取能力和保持细粒度特征的多样性;利用多尺度轻量化自注意力模块降低模型参数,增强对不同尺度和空间位置的感知,确保训练的稳定性并避免过度拟合低级特征;构建高效坐标注意力模块作为细粒度特征提取器,实现轻量化和高效率的特征提取。所提算法在Kaggle平台的Mineral Photos和Petrology Thin Section Data两个公开矿石图像数据集上分别取得了95.78%和94.77%的分类准确率,相较于其他9种轻量级分类网络,如ShuffleNetV2、MobileNetV3、RegNet、ConvNeXtV2、LeViT、EdgeViTs、AFFNeT、EdgeNeXt和MViTV2,所提算法具有更少的参数(1.27 MB)、更低的计算量(269 MFLOPs)和更快的分类速度(219 FPS)。 展开更多
关键词 矿石图像分类 卷积神经网络(CNN) transformER 跨通道特征融合 注意力机制
在线阅读 下载PDF
红外与可见光图像多尺度Transformer融合方法 被引量:5
17
作者 陈彦林 王志社 +2 位作者 邵文禹 杨帆 孙婧 《红外技术》 CSCD 北大核心 2023年第3期266-275,共10页
目前主流的深度融合方法仅利用卷积运算来提取图像局部特征,但图像与卷积核之间的交互过程与内容无关,且不能有效建立特征长距离依赖关系,不可避免地造成图像上下文内容信息的丢失,限制了红外与可见光图像的融合性能。为此,本文提出了... 目前主流的深度融合方法仅利用卷积运算来提取图像局部特征,但图像与卷积核之间的交互过程与内容无关,且不能有效建立特征长距离依赖关系,不可避免地造成图像上下文内容信息的丢失,限制了红外与可见光图像的融合性能。为此,本文提出了一种红外与可见光图像多尺度Transformer融合方法。以Swin Transformer为组件,架构了Conv Swin Transformer Block模块,利用卷积层增强图像全局特征的表征能力。构建了多尺度自注意力编码-解码网络,实现了图像全局特征提取与全局特征重构;设计了特征序列融合层,利用SoftMax操作计算特征序列的注意力权重系数,突出了源图像各自的显著特征,实现了端到端的红外与可见光图像融合。在TNO、Roadscene数据集上的实验结果表明,该方法在主观视觉描述和客观指标评价都优于其他典型的传统与深度学习融合方法。本方法结合自注意力机制,利用Transformer建立图像的长距离依赖关系,构建了图像全局特征融合模型,比其他深度学习融合方法具有更优的融合性能和更强的泛化能力。 展开更多
关键词 图像融合 Swin transformer 自注意力机制 多尺度 红外图像
在线阅读 下载PDF
基于Swin Transformer和混合特征聚合的红外与可见光图像融合方法 被引量:1
18
作者 李碧草 卢佳熙 +2 位作者 刘洲峰 李春雷 张洁 《红外技术》 CSCD 北大核心 2023年第7期721-731,共11页
红外与可见光图像融合可以生成包含更多信息的图像,比原始图像更符合人类视觉感知也有利于下游任务的进行。传统的基于信号处理的图像融合方法存在泛化能力不强、处理复杂图片融合性能下降等问题。深度学习有很强的特征提取能力,其生成... 红外与可见光图像融合可以生成包含更多信息的图像,比原始图像更符合人类视觉感知也有利于下游任务的进行。传统的基于信号处理的图像融合方法存在泛化能力不强、处理复杂图片融合性能下降等问题。深度学习有很强的特征提取能力,其生成的结果较好,但结果中存在纹理细节信息保存少、图像模糊的问题。针对这一问题,文中提出一种基于多尺度Swin-transformer和注意力机制的红外与可见光图像融合网络模型。Swin-transformer可以在多尺度视角下提取长距离语义信息,注意力机制可以将所提特征中的不重要特征弱化,保留主要信息。此外本文提出了一种新的混合特征聚合模块,针对红外和可见光图像各自的特点分别设计了亮度增强模块和细节保留模块,有效保留更多的纹理细节和红外目标信息。该融合方法包括编码器、特征聚合和解码器三部分。首先,将源图像输入编码器,提取多尺度深度特征;然后,设计特征聚合融合每个尺度的深度特征;最后,采用基于嵌套连接的解码器重构融合后的图像。在公开数据集上的实验结果表明本文提出的方法对比其他先进的方法具有更好的融合性能。其中在客观评价指标中EI、AG、QP、EN、SD指标达到最优。从主观感受上,所提红外和可见光图像融合方法能够使结果中保留更多的边缘细节。 展开更多
关键词 图像融合 红外和可见光图像 Swin-transformer 特征聚合 注意力机制
在线阅读 下载PDF
基于改进切尾均值的矿井图像去噪算法 被引量:1
19
作者 熊增举 姚成贵 张德华 《工矿自动化》 CSCD 北大核心 2024年第4期63-68,共6页
现有矿井图像去噪算法对于复杂噪声的去除效果有限,且处理速度不能满足实时监控需求。针对该问题,提出一种基于改进切尾均值的矿井图像去噪算法。首先,采用切尾均值滤波器对图像噪声进行初步滤除,同时引入二次检验机制处理残留的噪声点... 现有矿井图像去噪算法对于复杂噪声的去除效果有限,且处理速度不能满足实时监控需求。针对该问题,提出一种基于改进切尾均值的矿井图像去噪算法。首先,采用切尾均值滤波器对图像噪声进行初步滤除,同时引入二次检验机制处理残留的噪声点,通过引入离散系数提升算法对不同像素的区分能力,增强去噪性能;其次,采用基于极值数量的分类处理及再次检验机制,有效减少残留噪声问题;然后,在小波函数中引入新的控制变量优化软阈值函数和硬阈值函数,构建双阈值函数,结合Radon变换增强对线性特征的处理,增强对矿井图像的检测能力;最后,采用均方误差(MSE)与峰值信噪比(PSNR)进行图像质量评价。实验结果表明:相较于切尾均值算法、硬阈值算法、软阈值算法,基于改进切尾均值的矿井图像去噪算法处理的图像的MSE增长相对缓慢,MSE最小,图像去噪效果最好;引入离散系数后,去噪图像的MSE相较于引入前低300 dB左右,PSNR相较于引入前高20 dB左右,引入离散系数能有效减少噪声点对算法的影响;相较于卡尔曼遗传优化算法、变换域图像去噪算法、交叉分支卷积去噪网络,基于改进切尾均值的矿井图像去噪算法处理的图像MSE分别降低了27,21,13 dB,PSNR分别提升了8,6,3 dB,去噪耗时分别缩短了0.20,0.16,0.14 s。 展开更多
关键词 矿井图像去噪 切尾均值 二次检验机制 小波变换 离散系数 双阈值函数 RADON变换
在线阅读 下载PDF
联合多曝光融合和图像去模糊的深度网络
20
作者 张梅 赵康威 朱金辉 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第11期4219-4228,共10页
多曝光图像融合可提高图像的动态范围,从而获取高质量的图像。对于在像自动驾驶等快速运动场景中获得的模糊的长曝光图像,利用通用的图像融合方法将其直接与低曝光图像融合得到的图像质量并不高。目前暂缺乏对带有运动模糊的长曝光和短... 多曝光图像融合可提高图像的动态范围,从而获取高质量的图像。对于在像自动驾驶等快速运动场景中获得的模糊的长曝光图像,利用通用的图像融合方法将其直接与低曝光图像融合得到的图像质量并不高。目前暂缺乏对带有运动模糊的长曝光和短曝光图像的端到端融合方法。基于此,该文提出一种联合多曝光融合和图像去模糊的深度网络(DF-Net)端到端地解决带有运动模糊的长短曝光图像融合问题。该方法提出一种结合小波变换的残差模块用于构建编码器和解码器,其中设计单个编码器对短曝光图像进行特征提取,构建基于编码器和解码器的多级结构对带有模糊的长曝光图像进行特征提取,设计残差均值激励融合模块进行长短曝光特征的融合,最后通过解码器重建图像。由于缺少基准数据集,创建了基于数据集SICE的带有运动模糊的多曝光融合数据集,用于模型的训练与测试。最后,从定性和定量的角度将所设计的模型和方法和其他先进的图像去模糊和多曝光融合的分步优化方法进行了实验对比,验证了该文的模型和方法对带有运动模糊的多曝光图像融合的优越性。并在移动车辆上采集到的多曝光数据组上进行验证,结果显示了所提方法解决实际问题的有效性。 展开更多
关键词 多曝光图像融合 图像去模糊 小波变换 特征融合
在线阅读 下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部