To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to ac...To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.展开更多
In order to predict the storage life of a certain type of HTPB(hydroyl-terminated polybutadiene)coating at 25℃ and analyze the influence of pre-strain on the storage life,the accelerated aging tests of HTPB coating a...In order to predict the storage life of a certain type of HTPB(hydroyl-terminated polybutadiene)coating at 25℃ and analyze the influence of pre-strain on the storage life,the accelerated aging tests of HTPB coating at 40℃,50℃,60℃,70℃ with the pre-strain of 0%,3%,6%,9%,respectively were carried out.The variation regularity of the change of crosslinking density was analyzed and the aging model of HTPB coating under pre-strained thermally-accelerated aging was proposed.The storage life of HTPB coating at 25℃ was estimated by using the Berthelot equation as the end point of the aging life with a 30% decrease in maximum elongation.The results showed that the change of crosslinking density of HTPB coating increased with the increase of aging temperature and aging time,and decreased with the increase of pre-strain.Under 0% prestrain,the relationship between the change of crosslinking density of HTPB coating and the aging time can be described by the logarithmic model with the confidence probability greater than 99%.The stress relaxation phenomenon existed under 3%,6%and 9%pre-strained aging.The aging model considering chemical aging and pre-strain was established with the confidence probability greater than 90%.The storage life of HTPB coating was 15.2935 years at 25C under 0% prestrain,which was reduced by 13.9007%,75.6949% and 89.7859% under 3%,6% and 9% pre-strain,respectively.The existence of pre-strain has a serious impact on the storage life of HTPB coating,therefore,the pre-strain should be avoided as much as possible during the actual storage.展开更多
Silicone rubber gaskets are employed to keep fuel gases and oxidation in their own zones. Due to the viscosity and elasticity, the assembly force could relax when the silicone rubber is compressed in a proton exchange...Silicone rubber gaskets are employed to keep fuel gases and oxidation in their own zones. Due to the viscosity and elasticity, the assembly force could relax when the silicone rubber is compressed in a proton exchange membrane fuel cell. In this work, the stress relaxation behavior of silicone rubber samples is studied under different temperatures and simulated operating conditions. The results show that the stress relaxes exponentially with time at 25% strain level, especially at higher temperature or with higher acid concentration solution. The three-term Prony series can simulate the viscoelastic behavior well, and the Master curves are established by applying a time–temperature superposition method to estimate the life of the samples. It can save approximately 50% and 78% of the test time when an operating temperature and acid solution are chosen appropriately.展开更多
Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a n...Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction.展开更多
Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may ...Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may exacerbate these limitations.To address these issues,this study introduced a novel cement-stabilized permeable recycled aggregate material.A total of 162 beam specimens prepared with nine different levels of cement-aggregate ratio were tested to evaluate their permeability,bending load,and bending fatigue life.The experimental results indicate that increasing the content of recycled aggregates led to a reduction in both permeability and bending load.Additionally,the inclusion of recycled aggregates diminished the energy dissipation capacity of the specimens.These findings were used to establish a robust relationship between the initial damage in cement-stabilized permeable recycled aggregate material specimens and their fatigue life,and to propose a predictive model for their fatigue performance.Further,a method for assessing fatigue damage based on the evolution of fatigue-induced strain and energy dissipation was developed.The findings of this study provide valuable insights into the mechanical behavior and fatigue performance of cement-stabilized permeable recycled aggregate materials,offering guidance for the design of low-carbon-emission,permeable,and durable roadways incorporating recycled aggregates.展开更多
Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipmen...Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipment.The current data-driven RUL prediction method has not systematically studied the nonlinear hidden degradation modeling and the RUL distribution function.This paper uses the nonlinear Wiener process to build a dual nonlinear implicit degradation model.Based on the historical measured data of similar equipment,the maximum likelihood estimation algorithm is used to estimate the fixed coefficients and the prior distribution of a random coefficient.Using the on-site measured data of the target equipment,the posterior distribution of a random coefficient and actual degradation state are step-by-step updated based on Bayesian inference and the extended Kalman filtering algorithm.The analytical form of the RUL distribution function is derived based on the first hitting time distribution.Combined with the two case studies,the proposed method is verified to have certain advantages over the existing methods in the accuracy of prediction.展开更多
The value range of the failure threshold will generate an uncertain influence on the prediction results for the remaining useful life(RUL) of equipment. Most of the existing studies on the RUL prediction assume that t...The value range of the failure threshold will generate an uncertain influence on the prediction results for the remaining useful life(RUL) of equipment. Most of the existing studies on the RUL prediction assume that the failure threshold is a fixed value,as they have difficulty in reflecting the random variation of the failure threshold. In connection with the inadequacies of the existing research, an in-depth analysis is carried out to study the effect of the random failure threshold(RFT) on the prediction results for the RUL. First, a nonlinear degradation model with unit-to-unit variability and measurement error is established based on the nonlinear Wiener process. Second, the expectation-maximization(EM) algorithm is used to solve the estimated values of the parameters of the prior degradation model, and the Bayesian method is used to iteratively update the posterior distribution of the random coefficients. Then, the effects of three types of RFT constraint conditions on the prediction results for the RUL are analyzed, and the probability density function(PDF) of the RUL is derived. Finally,the degradation data of aero-turbofan engines are used to verify the correctness and advantages of the method.展开更多
Failure analysis of railway draw-hook coupler was carried out.The nondestructive testing method was undertaken on some failed couplers in service to designate critical areas of a coupler.Draw-Hook coupler is used to c...Failure analysis of railway draw-hook coupler was carried out.The nondestructive testing method was undertaken on some failed couplers in service to designate critical areas of a coupler.Draw-Hook coupler is used to connect with the same hook coupler or automatic coupler.The influence of each connection types on the coupler strength in this study was discussed.A numerical stress analysis using FEM was performed,and many approaches including critical plane approach were carried out on fatigue life prediction of coupler under different conditions.The results of the proposed fatigue criterion and fatigue life predictions,as well as static numerical analysis,are validated with experimental results.展开更多
基金Projects(51375222,51175242)supported by the National Natural Science Foundation of China
文摘To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.
基金This work was supported by the National Defense Pre-Research Projects[grant number ZS2015070132A12002].
文摘In order to predict the storage life of a certain type of HTPB(hydroyl-terminated polybutadiene)coating at 25℃ and analyze the influence of pre-strain on the storage life,the accelerated aging tests of HTPB coating at 40℃,50℃,60℃,70℃ with the pre-strain of 0%,3%,6%,9%,respectively were carried out.The variation regularity of the change of crosslinking density was analyzed and the aging model of HTPB coating under pre-strained thermally-accelerated aging was proposed.The storage life of HTPB coating at 25℃ was estimated by using the Berthelot equation as the end point of the aging life with a 30% decrease in maximum elongation.The results showed that the change of crosslinking density of HTPB coating increased with the increase of aging temperature and aging time,and decreased with the increase of pre-strain.Under 0% prestrain,the relationship between the change of crosslinking density of HTPB coating and the aging time can be described by the logarithmic model with the confidence probability greater than 99%.The stress relaxation phenomenon existed under 3%,6%and 9%pre-strained aging.The aging model considering chemical aging and pre-strain was established with the confidence probability greater than 90%.The storage life of HTPB coating was 15.2935 years at 25C under 0% prestrain,which was reduced by 13.9007%,75.6949% and 89.7859% under 3%,6% and 9% pre-strain,respectively.The existence of pre-strain has a serious impact on the storage life of HTPB coating,therefore,the pre-strain should be avoided as much as possible during the actual storage.
基金Projects(51505212,51505211,11302097)supported by the National Natural Science Foundation of ChinaProject(XTCX201609)supported by the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology,China+3 种基金Project(1301060B)supported by the Postdoctoral Science Foundation of Jiangsu Province,ChinaProject(11KJD130001)supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions,ChinaProject(ZKJ201401)supported by the on-job Doctorate Foundation of Nanjing Institute of Technology,ChinaProject(JXKJ201511)supported by the Open Projects about Key Discipline in 2015,School of Mechanical Engineering,Nanjing Institute of Technology,China
文摘Silicone rubber gaskets are employed to keep fuel gases and oxidation in their own zones. Due to the viscosity and elasticity, the assembly force could relax when the silicone rubber is compressed in a proton exchange membrane fuel cell. In this work, the stress relaxation behavior of silicone rubber samples is studied under different temperatures and simulated operating conditions. The results show that the stress relaxes exponentially with time at 25% strain level, especially at higher temperature or with higher acid concentration solution. The three-term Prony series can simulate the viscoelastic behavior well, and the Master curves are established by applying a time–temperature superposition method to estimate the life of the samples. It can save approximately 50% and 78% of the test time when an operating temperature and acid solution are chosen appropriately.
基金supported by National Natural Science Foundation of China (61703410,61873175,62073336,61873273,61773386,61922089)。
文摘Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction.
基金Project(2024JJ2073)supported by the Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProjects(2023YFC3807205,2019YFC1904704)+4 种基金supported by the National Key R&D Program of ChinaProject(52178443)supported by the National Natural Science Foundation of ChinaProject(2024ZZTS0109)supported by Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may exacerbate these limitations.To address these issues,this study introduced a novel cement-stabilized permeable recycled aggregate material.A total of 162 beam specimens prepared with nine different levels of cement-aggregate ratio were tested to evaluate their permeability,bending load,and bending fatigue life.The experimental results indicate that increasing the content of recycled aggregates led to a reduction in both permeability and bending load.Additionally,the inclusion of recycled aggregates diminished the energy dissipation capacity of the specimens.These findings were used to establish a robust relationship between the initial damage in cement-stabilized permeable recycled aggregate material specimens and their fatigue life,and to propose a predictive model for their fatigue performance.Further,a method for assessing fatigue damage based on the evolution of fatigue-induced strain and energy dissipation was developed.The findings of this study provide valuable insights into the mechanical behavior and fatigue performance of cement-stabilized permeable recycled aggregate materials,offering guidance for the design of low-carbon-emission,permeable,and durable roadways incorporating recycled aggregates.
基金supported by the National Defense Foundation of China(7160118371901216)the China Postdoctoral Science Foundation(2017M623415)
文摘Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipment.The current data-driven RUL prediction method has not systematically studied the nonlinear hidden degradation modeling and the RUL distribution function.This paper uses the nonlinear Wiener process to build a dual nonlinear implicit degradation model.Based on the historical measured data of similar equipment,the maximum likelihood estimation algorithm is used to estimate the fixed coefficients and the prior distribution of a random coefficient.Using the on-site measured data of the target equipment,the posterior distribution of a random coefficient and actual degradation state are step-by-step updated based on Bayesian inference and the extended Kalman filtering algorithm.The analytical form of the RUL distribution function is derived based on the first hitting time distribution.Combined with the two case studies,the proposed method is verified to have certain advantages over the existing methods in the accuracy of prediction.
基金supported by the China Postdoctoral Science Foundation(2017M623415)。
文摘The value range of the failure threshold will generate an uncertain influence on the prediction results for the remaining useful life(RUL) of equipment. Most of the existing studies on the RUL prediction assume that the failure threshold is a fixed value,as they have difficulty in reflecting the random variation of the failure threshold. In connection with the inadequacies of the existing research, an in-depth analysis is carried out to study the effect of the random failure threshold(RFT) on the prediction results for the RUL. First, a nonlinear degradation model with unit-to-unit variability and measurement error is established based on the nonlinear Wiener process. Second, the expectation-maximization(EM) algorithm is used to solve the estimated values of the parameters of the prior degradation model, and the Bayesian method is used to iteratively update the posterior distribution of the random coefficients. Then, the effects of three types of RFT constraint conditions on the prediction results for the RUL are analyzed, and the probability density function(PDF) of the RUL is derived. Finally,the degradation data of aero-turbofan engines are used to verify the correctness and advantages of the method.
文摘Failure analysis of railway draw-hook coupler was carried out.The nondestructive testing method was undertaken on some failed couplers in service to designate critical areas of a coupler.Draw-Hook coupler is used to connect with the same hook coupler or automatic coupler.The influence of each connection types on the coupler strength in this study was discussed.A numerical stress analysis using FEM was performed,and many approaches including critical plane approach were carried out on fatigue life prediction of coupler under different conditions.The results of the proposed fatigue criterion and fatigue life predictions,as well as static numerical analysis,are validated with experimental results.