目前车牌检测技术快速发展,但在复杂场景下有效检测出车牌数据仍是研究的难点。针对这一问题提出基于改进YOLOv7(you only look once v7)的复杂场景下车牌检测方法。首先,提出一种轻量化自注意力主干特征提取网络,对YOLOv7的主干网络进...目前车牌检测技术快速发展,但在复杂场景下有效检测出车牌数据仍是研究的难点。针对这一问题提出基于改进YOLOv7(you only look once v7)的复杂场景下车牌检测方法。首先,提出一种轻量化自注意力主干特征提取网络,对YOLOv7的主干网络进行替换。此外,用全维动态卷积替换特征融合网络中的普通卷积,同时嵌入CA(coordinate attention)注意力模块,增强模型特征融合能力。在此基础上对原算法中损失函数进行替换,采用更加优秀的损失函数SIoU(SCYLLA intersection over union),提高检测效率。实验采用CCPD(Chinese city parking dataset)数据集,筛选出部分具有挑战性的复杂场景中的车牌图片。实验结果表明:改进后的YOLOv7算法检测速度有大幅提升,帧率从原有的81.9帧/s提升至120帧/s。同时准确率(m AP)达到95.1%,提升2.9百分点,权重模型大小为36.1 MB。可以做到对复杂场景下的车牌进行实时检测,满足轻量化要求,提升了检测速度和精度。展开更多
针对现有车牌定位算法准确率不高、步骤多和速度慢等问题,提出一种彩色图像车牌定位方法(License plate locating based on CNN color edge detec tion,LPLCCED).首先利用细胞神经网络(Cell neural network,CNN)模型导出一种与车牌颜色...针对现有车牌定位算法准确率不高、步骤多和速度慢等问题,提出一种彩色图像车牌定位方法(License plate locating based on CNN color edge detec tion,LPLCCED).首先利用细胞神经网络(Cell neural network,CNN)模型导出一种与车牌颜色特征相结合的车牌定位专用边缘检测算法,将车牌的颜色对约束条件融合到边缘检测算法中,本文专用边缘检测算法可以大大缩小车牌初步定位的范围.接下来提出一种针对车牌特征的边缘滤波算法,最后根据车牌结构和纹理特征对候选区域进行判别验证.该流程的各个环节都可以通过硬件实现,为面向智能交通领域的实时车牌识别系统的前期车牌定位处理提供了依据.展开更多
文摘目前车牌检测技术快速发展,但在复杂场景下有效检测出车牌数据仍是研究的难点。针对这一问题提出基于改进YOLOv7(you only look once v7)的复杂场景下车牌检测方法。首先,提出一种轻量化自注意力主干特征提取网络,对YOLOv7的主干网络进行替换。此外,用全维动态卷积替换特征融合网络中的普通卷积,同时嵌入CA(coordinate attention)注意力模块,增强模型特征融合能力。在此基础上对原算法中损失函数进行替换,采用更加优秀的损失函数SIoU(SCYLLA intersection over union),提高检测效率。实验采用CCPD(Chinese city parking dataset)数据集,筛选出部分具有挑战性的复杂场景中的车牌图片。实验结果表明:改进后的YOLOv7算法检测速度有大幅提升,帧率从原有的81.9帧/s提升至120帧/s。同时准确率(m AP)达到95.1%,提升2.9百分点,权重模型大小为36.1 MB。可以做到对复杂场景下的车牌进行实时检测,满足轻量化要求,提升了检测速度和精度。
文摘针对现有车牌定位算法准确率不高、步骤多和速度慢等问题,提出一种彩色图像车牌定位方法(License plate locating based on CNN color edge detec tion,LPLCCED).首先利用细胞神经网络(Cell neural network,CNN)模型导出一种与车牌颜色特征相结合的车牌定位专用边缘检测算法,将车牌的颜色对约束条件融合到边缘检测算法中,本文专用边缘检测算法可以大大缩小车牌初步定位的范围.接下来提出一种针对车牌特征的边缘滤波算法,最后根据车牌结构和纹理特征对候选区域进行判别验证.该流程的各个环节都可以通过硬件实现,为面向智能交通领域的实时车牌识别系统的前期车牌定位处理提供了依据.