期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于提升小波和LS-SVM的大坝变形预测 被引量:7
1
作者 秦栋 郑雪琴 许后磊 《水电能源科学》 北大核心 2010年第9期64-66,共3页
提出了一种基于提升小波和最小二乘支持向量机的大坝变形预测方法,通过提升小波分析提取大坝监测数据效应量,分别对各效应量使用最小二乘支持向量机模型进行训练预测,再将合成各分量的预测结果作为最终的变形预测结果。算例结果表明,该... 提出了一种基于提升小波和最小二乘支持向量机的大坝变形预测方法,通过提升小波分析提取大坝监测数据效应量,分别对各效应量使用最小二乘支持向量机模型进行训练预测,再将合成各分量的预测结果作为最终的变形预测结果。算例结果表明,该方法较符合实际情况,具有很高的预测精度和良好的泛化能力。 展开更多
关键词 提升小波 ls-svm 大坝变形 变形预测 support vector machine Least Square LIFTING Wavelet Based 最小二乘支持向量机 预测结果 支持向量机模型 效应量 预测精度 预测方法 小波分析 监测数据 泛化能力 训练 提取 合成
在线阅读 下载PDF
基于鲁棒LS-SVM的控制图模式识别 被引量:1
2
作者 程志强 马义中 Zhi-qiang Yi-zhong 《计量学报》 CSCD 北大核心 2009年第6期-,共3页
提出一种基于鲁棒最小二乘支持向量机(LS-SVM)的控制图模式识别方法,并研究其应用于过程质量诊断的可行性、有效性.理论研究和仿真试验结果表明,该方法对于标准的6种控制图模式都具有很高的模式识别率,训练模式识别器所需样本少,且训练... 提出一种基于鲁棒最小二乘支持向量机(LS-SVM)的控制图模式识别方法,并研究其应用于过程质量诊断的可行性、有效性.理论研究和仿真试验结果表明,该方法对于标准的6种控制图模式都具有很高的模式识别率,训练模式识别器所需样本少,且训练结果泛化能力强,计算方法简单迅速. Abstract: A technique based on the robust least squares support vector machines(LS-SVM) used for control charts pattern recognition is proposed, the applied feasibility and validity of this technique in process quality diagnosis is also investigated. Theoretical research and experimental results show that this approach performs well upon the six typical control charts pattern recognition with high recognition accuracy, simple computation and fast training process, and the preeminent generalization ability on the condition of small sample size. 展开更多
关键词 鲁棒 ls-svm 控制图模式识别 Robust Based PATTERN RECOGNITION PATTERN RECOGNITION control charts support vector machines generalization ability Theoretical research 最小二乘支持向量机 training PROCESS PROCESS quality least SQUARES 模式识别方法 small sample 模式识别器 质量诊断 训练结果
在线阅读 下载PDF
基于遗传算法和最小二乘支持向量机的织物剪切性能预测 被引量:2
3
作者 卢桂馥 王勇 +1 位作者 窦易文 Gui-fu Yi-wen 《计量学报》 CSCD 北大核心 2009年第6期-,共4页
提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神... 提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神经网络和线性回归方法具有更高的精度和范化能力. Abstract: A new method is proposed to predict the fabric shearing property with least square support vector machines ( LS-SVM ). The genetic algorithm is investigated to select the parameters of LS-SVM models as a means of improving the LS- SVM prediction. After normalizing the sampling data, the sampling data are inputted into the model to gain the prediction result. The simulation results show the prediction model gives better forecasting accuracy and generalization ability than BP neural network and linear regression method. 展开更多
关键词 基于遗传算法 最小二乘支持向量机 织物 剪切 性能预测模型 support vector machines sampling data support vector machines generalization ability simulation results linear regression genetic algorithm BP neural network prediction model 线性回归方法 ls-svm least square 归一化处理 new method 预测结果
在线阅读 下载PDF
Hybrid connectionist model determines CO_2–oil swelling factor 被引量:2
4
作者 Mohammad Ali Ahmadi Sohrab Zendehboudi Lesley A. James 《Petroleum Science》 SCIE CAS CSCD 2018年第3期591-604,共14页
In-depth understanding of interactions between crude oil and CO2 provides insight into the CO2-based enhanced oil recovery(EOR) process design and simulation. When CO2 contacts crude oil, the dissolution process tak... In-depth understanding of interactions between crude oil and CO2 provides insight into the CO2-based enhanced oil recovery(EOR) process design and simulation. When CO2 contacts crude oil, the dissolution process takes place. This phenomenon results in the oil swelling, which depends on the temperature, pressure, and composition of the oil. The residual oil saturation in a CO2-based EOR process is inversely proportional to the oil swelling factor. Hence, it is important to estimate this influential parameter with high precision. The current study suggests the predictive model based on the least-squares support vector machine(LS-SVM) to calculate the CO2–oil swelling factor. A genetic algorithm is used to optimize hyperparameters(у and б^2) of the LS-SVM model. This model showed a high coefficient of determination(R^2= 0.9953) and a low value for the mean-squared error(MSE = 0.0003) based on the available experimental data while estimating the CO2–oil swelling factor. It was found that LS-SVM is a straightforward and accurate method to determine the CO2–oil swelling factor with negligible uncertainty. This method can be incorporated in commercial reservoir simulators to include the effect of the CO2–oil swelling factor when adequate experimental data are not available. 展开更多
关键词 C02 injection CO2 swelling Genetic algorithm Predictive model least-squares support vector machine
在线阅读 下载PDF
基于民航团队旅客销售的组合预测方法分析
5
作者 黄奇 徐月芳 《航空计算技术》 2017年第1期27-30,共4页
利用Matlab分别用回归分析算法、BP神经网络算法、最小二乘支持向量机算法和组合预测算法对民航团队销售数据进行预测和比较分析,期望为民航销售人员提供更加精准的预测信息,以获得更高的航线收益。结果显示神经网络、支持向量机和组合... 利用Matlab分别用回归分析算法、BP神经网络算法、最小二乘支持向量机算法和组合预测算法对民航团队销售数据进行预测和比较分析,期望为民航销售人员提供更加精准的预测信息,以获得更高的航线收益。结果显示神经网络、支持向量机和组合预测3种算法比航空公司常用的回归分析预测精准度有了明显的提高。支持向量机预测精度相对神经网络稍低,却拥有更强的泛化能力。组合预测能避免单一预测方法的误差,更加适合航线销售人员的实际操作。 展开更多
关键词 民航收益管理 BP神经网络 最小二乘支持向量机(Least SQUARES support vector machines ls-svm) 组合预测算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部