期刊文献+
共找到2,392篇文章
< 1 2 120 >
每页显示 20 50 100
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:3
1
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
在线阅读 下载PDF
Improved scheme to accelerate sparse least squares support vector regression
2
作者 Yongping Zhao Jianguo Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期312-317,共6页
The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in p... The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem. 展开更多
关键词 least squares support vector regression machine pruning algorithm iterative methodology classification.
在线阅读 下载PDF
电力变压器内部故障的递进分层诊断方法 被引量:1
3
作者 咸日常 李云淏 +4 位作者 刘焕国 王昭璇 张海强 胡玉耀 王玮 《电网技术》 北大核心 2025年第4期1726-1734,I0079,I0080,共11页
电力变压器内部故障成因复杂、种类繁多,精确诊断难度大,现有诊断技术大多滞留于故障定性阶段。为实现多类型故障的精准定位,该文通过建立多状态量与故障特征之间的递进映射关系,提出一种改进灰狼算法与最小二乘支持向量机耦合的电力变... 电力变压器内部故障成因复杂、种类繁多,精确诊断难度大,现有诊断技术大多滞留于故障定性阶段。为实现多类型故障的精准定位,该文通过建立多状态量与故障特征之间的递进映射关系,提出一种改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障递进分层诊断方法。首先介绍改进灰狼算法与最小二乘支持向量机的原理,建立电力变压器故障递进分层、自动诊断及定位模型;其次基于300组电力变压器的状态量,利用核主成分分析法进行降维处理,选取线性无关的特征状态量,依据DL/T 1685—2017《油浸式变压器状态评价导则》进行离散化处理,借助算法模型递进分层、自动诊断:第一层诊断故障回路、第二层确定故障部位、第三层明确故障原因,得到各分类器的诊断准确率及惩罚系数和核函数参数的最优组合解,并与其他算法模型的故障诊断结果进行分析对比;最后以实际故障案例验证方法的有效性。结果表明:该文所提诊断模型比其他方法拥有更高准确率和更快的运算速度。 展开更多
关键词 电力变压器 改进灰狼算法 最小二乘支持向量机 多状态量 内部故障 递进分层诊断
在线阅读 下载PDF
多策略改进COA算法优化LSSVM的变压器故障诊断研究 被引量:1
4
作者 李斌 白翔旭 《电工电能新技术》 北大核心 2025年第4期112-119,共8页
为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混... 为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混沌映射、透镜反向学习、Levy飞行等策略对浣熊优化算法(COA)进行优化,提高全局寻优能力;然后,应用ICOA算法进行LSSVM参数寻优,构建ICOA-LSSVM故障诊断模型;最后,将特征提取后的数据导入ICOA-LSSVM中并与其他模型对比。实验结果表明所提方法准确率为96.19%,相比其他诊断模型具有更高的故障诊断精度。 展开更多
关键词 变压器故障诊断 浣熊优化算法 核主成分分析 最小二乘支持向量机
在线阅读 下载PDF
基于SVS算法优选整形正则化参数的WLSSI谱反演方法研究 被引量:1
5
作者 乐友喜 付俊楠 葛传友 《石油地球物理勘探》 北大核心 2025年第2期440-451,共12页
谱反演方法是研究非平稳地震信号的有效手段,在地震信号处理、分析和综合解释领域发挥了重要的作用。文中提出一种基于分群涡流搜索(SVS)算法优选整形正则化参数的加权最小二乘谱反演(WLSSISVSOSR)方法。该方法从一般正问题的理论公式出... 谱反演方法是研究非平稳地震信号的有效手段,在地震信号处理、分析和综合解释领域发挥了重要的作用。文中提出一种基于分群涡流搜索(SVS)算法优选整形正则化参数的加权最小二乘谱反演(WLSSISVSOSR)方法。该方法从一般正问题的理论公式出发,反演得到地震信号的傅里叶级数系数,然后将整形正则化思想引入加权最小二乘谱反演中,基于谱反演方法构造了一种整形正则化算子;采用分群涡流搜索算法对整形正则化参数进行优选,较好地克服了反演过程中的收敛速度慢和稳定性差的问题,获得了地震信号较为稳定的时―频域分布特征。模型测试及实际资料处理结果表明:该方法具有很好的时频域分辨率及能量聚焦性,能够识别含油气储层的优势频率范围;利用优势频率的瞬时振幅特征,可以基本确定含油气储层的横向分布范围,从而实现对含油气储层的精细刻画和描述。 展开更多
关键词 谱反演 整形正则化 分群涡流搜索算法 加权最小二乘 时频谱
在线阅读 下载PDF
基于RLS-RBPF算法的车辆悬架参数辨识方法研究
6
作者 王姝 董传昊 +3 位作者 张大伟 赵轩 周辰雨 邵帅 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期19-27,共9页
在汽车的运行过程中,悬架系统的状态不可避免地会发生改变。为了准确评估悬架参数的长期变化,尤其是实现早期故障预警,提出了一种基于车辆实际行驶状态的悬架参数辨识方法,首先在车辆的关键部位安装振动传感器,采集振动加速度信号。然后... 在汽车的运行过程中,悬架系统的状态不可避免地会发生改变。为了准确评估悬架参数的长期变化,尤其是实现早期故障预警,提出了一种基于车辆实际行驶状态的悬架参数辨识方法,首先在车辆的关键部位安装振动传感器,采集振动加速度信号。然后,通过递推最小二乘算法对悬架的弹簧刚度和减震器阻尼系数进行初步识别。在此基础上,进一步采用Rao-Blackwellized粒子滤波算法对初步辨识结果进行二次优化。最后,结合实测的车辆硬点坐标和通过辨识得到的悬架参数,基于多体动力学原理构建车辆动力学模型,与实际设计参数进行对比,并进行整车动力学仿真以验证辨识参数的准确性。实验结果表明,该方法在识别悬架弹簧刚度和减震器阻尼系数方面具有很高的精度,与真实值的最大偏差仅为2.50%和1.82%。同时,车辆动力学模型的仿真输出与实测载荷谱的均方根误差控制在5%以内。该方法显著提高了悬架系统参数辨识的精确度,是一种高精度的汽车悬架参数在线辨识算法。 展开更多
关键词 递推最小二乘算法 RBPF算法 实车载荷谱 参数辨识
在线阅读 下载PDF
基于GWO-LMS-RSSD的旋转机械耦合故障分离及特征强化方法
7
作者 许文 施卫华 +3 位作者 李红钢 华如南 刘厚林 董亮 《机电工程》 北大核心 2025年第4期677-685,共9页
针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号... 针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号进行了滤波处理,使故障特征得到了初步强化;然后,根据耦合故障的不同共振属性,利用RSSD算法将故障耦合分解为高共振分量和低共振分量,完成了耦合故障分离;特别地,针对LMS算法中参数依赖人工经验、自适应差等问题,研究了基于灰狼优化算法(GWO)的参数自适应优化方法,设计了以信噪比和均方误差构成的优化目标;最后,对稀疏分解得到的信号进行了包络解调,完成了耦合故障分离及特征强化,同时,利用模拟信号和实验信号对该方法进行了验证分析。研究结果表明:GWO-LMS-RSSD算法能用于有效降低噪声干扰,分离旋转机械耦合故障及强化故障特征。该研究成果可为强噪声干扰下耦合故障的特征分离及强化提供一种新的思路。 展开更多
关键词 耦合故障诊断 旋转机械 共振稀疏分解 自适应滤波最小均方算法 灰狼优化算法 信噪比 均方误差
在线阅读 下载PDF
一种基于矢量影响系数算法的车轮动平衡标定
8
作者 陈晖 边帅 +1 位作者 黄海龙 易素君 《机械设计与制造》 北大核心 2025年第7期97-100,105,共5页
建立了车轮不平衡量的动力学模型,给出了在该系统模型下不平衡量的解算方法;研究了传统动平衡检测的标定算法,提出了一种针对车轮动平衡矢量影响系数算法,构造了不平衡量与传感器测量信号之间的矢量系数函数,完成了矢量影响系数法量标定... 建立了车轮不平衡量的动力学模型,给出了在该系统模型下不平衡量的解算方法;研究了传统动平衡检测的标定算法,提出了一种针对车轮动平衡矢量影响系数算法,构造了不平衡量与传感器测量信号之间的矢量系数函数,完成了矢量影响系数法量标定;引入了最小二乘法对矢量影响系数进行拟合求解,最终得到标定系数;建了实验平台进行矢量系数标定验证,实验结果表明,相比于传统的算法标定,本算法能够有效地消除主轴系统自身的误差和现场的噪声振动干扰。测试结果的准确性与稳定性明显提高。 展开更多
关键词 车轮动平衡 算法标定 最小二乘法
在线阅读 下载PDF
基于PSAF-LMS算法的多象限周视激光引信抗云雾干扰方法
9
作者 查冰婷 徐光博 +1 位作者 秦建新 张合 《兵工学报》 北大核心 2025年第2期275-286,共12页
叠加在目标回波上的云雾后向散射信号是影响空空导弹周视激光引信测距精度的重要因素。针对目前抗云雾干扰方法适应性差、处理时效低等问题,提出一种基于可暂停样条自适应滤波的最小均方(Pauseable Spline Adaptive Filter-Least Mean S... 叠加在目标回波上的云雾后向散射信号是影响空空导弹周视激光引信测距精度的重要因素。针对目前抗云雾干扰方法适应性差、处理时效低等问题,提出一种基于可暂停样条自适应滤波的最小均方(Pauseable Spline Adaptive Filter-Least Mean Square,PSAF-LMS)算法,并设计了算法在现场可编程门阵列(Field-Programmable Gate Array,FPGA)与ARM的联合实现方案。PSAF-LMS算法可有效减少滤波器的稳态误差,并提高激光引信的时刻鉴别精度和抗干扰能力。此外,利用不同信噪比的目标回波信号进行仿真,并开展了云雾环境滤波效果模拟验证试验。研究结果表明:所提算法能够在34.85μs内有效滤除后向散射,并保留目标波峰原始变化趋势,滤波前后信噪比平均可提高25.15 dB以上。 展开更多
关键词 激光引信 后向散射 自适应滤波 样条最小均方算法
在线阅读 下载PDF
基于SRCKF算法的锂离子电池荷电状态估计
10
作者 肜瑶 张洋洋 吕运朋 《电池》 北大核心 2025年第2期273-278,共6页
为提高荷电状态(SOC)估计的精度,以磷酸铁锂锂离子电池为研究对象,在双极化等效电路模型的基础上,分析容积卡尔曼滤波器(CKF)的SOC估计过程。针对CKF算法发散的问题,采用平方根容积卡尔曼滤波(SRCKF)算法进行电池SOC估计。SRCKF算法通... 为提高荷电状态(SOC)估计的精度,以磷酸铁锂锂离子电池为研究对象,在双极化等效电路模型的基础上,分析容积卡尔曼滤波器(CKF)的SOC估计过程。针对CKF算法发散的问题,采用平方根容积卡尔曼滤波(SRCKF)算法进行电池SOC估计。SRCKF算法通过引入正交三角(QR)分解,误差协方差矩阵在计算过程中以平方根的形式传播,从而确保矩阵的正定和对称。与CKF算法对比发现,SRCKF算法的估计误差为2.0534×10-4 V,说明可以提高SOC估计的精度。 展开更多
关键词 磷酸铁锂锂离子电池 双极化模型 平方根容积卡尔曼滤波(SRCKF)算法 荷电状态(SOC)估计
在线阅读 下载PDF
基于激光测距传感器的机械臂末端位姿误差校正方法
11
作者 韩金利 尚卓 《传感技术学报》 北大核心 2025年第3期511-517,共7页
机械臂位姿校正由于误差考虑不充分,导致误差校正效果差,机械臂稳定性低,因此,提出基于激光测距传感器的机械臂末端位姿误差校正方法。该方法基于激光测距传感器原理,通过最小二乘算法,确定机械臂末端位姿误差,包括位置误差和姿态误差,... 机械臂位姿校正由于误差考虑不充分,导致误差校正效果差,机械臂稳定性低,因此,提出基于激光测距传感器的机械臂末端位姿误差校正方法。该方法基于激光测距传感器原理,通过最小二乘算法,确定机械臂末端位姿误差,包括位置误差和姿态误差,根据得到的误差,采用适应度改进的遗传算法,结合非线性传递特性分析机械臂的末端位姿,获得误差补偿,构建机械臂末端位姿的误差校正方法,实现机械臂末端位姿误差校正。经过实验证明,所提方法校正后的最高误差仅为0.13 cm,响应时间低于1.25 s,复杂度为0.30,并且振动区间较小,仅为[-0.03,0.02]m,说明该方法较为简洁,可以快速实现机械臂误差校正,降低了算法复杂度的同时,提高了机械臂的稳定性强。 展开更多
关键词 激光测距传感器 机械臂末端位姿 误差校正 最小二乘算法 遗传算法 非线性传递特性
在线阅读 下载PDF
基于云端数据充电初期片段的电池极化参数辨识
12
作者 王丽梅 崔艳伟 +3 位作者 孙景景 赵秀亮 刘良 盘朝奉 《汽车安全与节能学报》 北大核心 2025年第2期294-302,共9页
为了提高电池极化参数在线辨识的精度及速度,提出了一种基于云端数据的基准极化参数辨识方法。通过开展电池充放脉冲实验,研究电池极化参数特性;基于云端数据充电初期片段,采用类比混合脉冲功率性能(HPPC)方法,获取充电极化参数;以充电... 为了提高电池极化参数在线辨识的精度及速度,提出了一种基于云端数据的基准极化参数辨识方法。通过开展电池充放脉冲实验,研究电池极化参数特性;基于云端数据充电初期片段,采用类比混合脉冲功率性能(HPPC)方法,获取充电极化参数;以充电极化参数为约束,利用变遗忘因子递推最小二乘法(VFFRLS),计算了放电极化参数。结果表明:本文方法的电池时间常数范围为34~53 s,在云端相应小电流倍率下极化参数不随倍率变化;充电极化内阻和极化电容的计算结果与实验结果吻合;添加约束后的在线辨识方法的收敛速度,与未添加约束相比,最少提高了6%。 展开更多
关键词 电池充电放电 极化参数 云端数据 离线辨识 类比混合脉冲功率性能(HPPC)法 变遗忘因子递推最小二乘法(VFFRLS)
在线阅读 下载PDF
多压电驱动机构机电耦合动力学建模与过驱动控制
13
作者 黄涛 王迎斌 +1 位作者 林志成 凌明祥 《仪器仪表学报》 北大核心 2025年第4期346-354,共9页
多压电驱动是突破纳米压电驱动机构位移行程限制的有效方案,但多压电驱动机构存在固有迟滞非线性、压电驱动之间耦合、非线性与线性耦合、过驱动冗余等问题。针对以上挑战,提出一种多压电并行驱动机构的机电耦合动力学建模与过驱动控制... 多压电驱动是突破纳米压电驱动机构位移行程限制的有效方案,但多压电驱动机构存在固有迟滞非线性、压电驱动之间耦合、非线性与线性耦合、过驱动冗余等问题。针对以上挑战,提出一种多压电并行驱动机构的机电耦合动力学建模与过驱动控制策略。首先,建立Hammerstein结构的机电耦合动力学模型,分别描述多压电驱动机构线性和非线性特性,并相应提出模型线性部分和非线性部分的参数估计方法。其次,提出综合反馈线性化、控制分配算法、上层控制律的总体过驱动控制策略,尤其是提出一种最小二乘控制分配算法,通过分配控制量实现误差序列二范数最小。最后,对所提出的建模与控制方法,分别进行了参数估计实验与过驱动控制实验。其中参数估计实验结果表明所提出的模型输出曲线能够很好拟合多压电驱动机构实验输出曲线,能够有效描述多压电驱动机构迟滞非线性输入输出特性,所提出的参数估计方法能准确估计模型参数。过驱动控制实验结果表明所提出的最小二乘控制分配算法的轨迹跟踪性能优于直接分配和最优分配,特别是期望轨迹为幅值130μm、频率10 Hz的正弦信号时,所提出的最小二乘控制分配算法的精度比直接分配算法提高了56.63%,比最优分配算法提高了47.83%。 展开更多
关键词 多压电驱动 迟滞非线性 机电耦合动力学模型 过驱动控制 最小二乘控制分配算法
在线阅读 下载PDF
新能源汽车驱动电机冷却系统劣化故障预测
14
作者 柳炽伟 黄韵迪 《汽车安全与节能学报》 北大核心 2025年第2期277-285,共9页
提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行... 提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行降维重构处理,蝗虫算法(GOA)用来优化最小二乘支持向量机(LSSVM)的参数。通过实车故障试验采集样本数据,分别输入至LSSVM预测模型、PCA-PSO-SVM及PCA-GOA-LSSVM模型,进行对比测试。结果表明:基于PCA-GOA-LSSVM的多分类器预测模型准确率达91.41%、精确率达86.25%,高于对比的预测模型,可准确提醒及时维护车辆及有效判断故障类型;该模型能够用于新能源汽车驱动电机冷却系统性能劣化预测和故障诊断中。 展开更多
关键词 新能源汽车 驱动电机冷却系统 故障预测 最小二乘支持向量机(LSSVM) 蝗虫算法(GOA) 主成分分析(PCA)
在线阅读 下载PDF
永磁同步电机全速域无传感器复合控制策略研究
15
作者 李贵远 张静 +3 位作者 郭中阳 刘杰 刘勇 崔安迪 《重庆理工大学学报(自然科学)》 北大核心 2025年第4期200-208,共9页
为解决单一的永磁同步电机无传感器控制策略在特定转速区间控制效果不佳的问题,提出一种新的复合策略,以实现全速域高性能控制。在矢量控制电流控制器环节,使用神经网络PID控制器,当突加负载时,0.02 s即可恢复到原转速,提高系统的鲁棒性... 为解决单一的永磁同步电机无传感器控制策略在特定转速区间控制效果不佳的问题,提出一种新的复合策略,以实现全速域高性能控制。在矢量控制电流控制器环节,使用神经网络PID控制器,当突加负载时,0.02 s即可恢复到原转速,提高系统的鲁棒性;在零、低速段,采用改进方波高频信号注入法,避免使用滤波器,无需调节滤波系数,在转速上减少0.03 s的延时,进一步提高了控制精度;在中高速段,采用超螺旋滑模观测器,通过采用积分形式消除高频噪声,减小误差以及相位延迟,但使用固定的滑模参数会使估算精度容易受到参数干扰产生误差,降低控制精度比较低,对此提出了改进的粒子群优化算法(improved particle swarm optimization,IPSO)超螺旋滑模观测器,转速误差仅有0.1 r/min;最后,通过采用改进加权切换函数,仅有0.5 s的抖动时间,高效实现2种控制策略的切换。经过仿真验证,该复合控制策略使永磁同步电机在各速度区间均具有较高的估算精度和优良的动态响应性能。 展开更多
关键词 永磁同步电机 神经网络PID 方波高频信号注入法 粒子群优化算法 超螺旋滑模观测器 加权切换函数
在线阅读 下载PDF
基于改进SVD和LS-Prony的电机转子断条故障诊断 被引量:1
16
作者 贾朱植 康云娟 +2 位作者 祝洪宇 张博 宋向金 《电子测量技术》 北大核心 2025年第3期100-111,共12页
采用电机定子电流信号特征分析诊断转子断条故障时,基频两侧的故障特征频率和幅值是判断故障发生与否和严重程度的重要参数。FFT算法的诊断能力严重依赖于所分析的数据长度,最小二乘Prony分析算法虽然具有短时数据分析能力,但是该方法... 采用电机定子电流信号特征分析诊断转子断条故障时,基频两侧的故障特征频率和幅值是判断故障发生与否和严重程度的重要参数。FFT算法的诊断能力严重依赖于所分析的数据长度,最小二乘Prony分析算法虽然具有短时数据分析能力,但是该方法对噪声异常敏感,当电机低频低负载运行时同样存在故障特征提取能力不足和诊断失效的问题。为解决上述问题,提出改进奇异值分解和LS-PA算法相结合的转子断条故障诊断方法。首先采用按列截断方式重构奇异值分解矩阵,根据奇异值差商确定有效阶次,进而对定子电流信号进行预处理以适度抑制噪声,然后运用LS-PA算法对预处理后的信号做故障特征识别和诊断。有限元仿真和实验分析结果表明,所提出的方法能有效抑制电流信号噪声,具有短时数据高分辨率的诊断性能,在工频和变频供电时均能实现电机轻载到满载全工况稳定运行条件下的转子断条故障诊断,诊断性能高于经典的FFT方法。 展开更多
关键词 故障诊断 奇异值分解 最小二乘Prony算法 电机定子电流信号特征分析
在线阅读 下载PDF
基于KPCA-IPOA-LSSVM的变压器电热故障诊断 被引量:1
17
作者 陈尧 周连杰 《南方电网技术》 北大核心 2025年第1期20-29,共10页
为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vec... 为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的变压器故障诊断方法。首先用KPCA对多维变压器故障数据进行特征提取,降低计算复杂度。其次引入Logistic混沌映射、自适应权重策略和透镜成像反向学习策略对鹈鹕优化算法(pelican optimization algorithm,POA)进行改进。最后建立了KPCA-IPOA-LSSVM故障诊断模型,诊断精度为94.24%,与PCA-IPOA-SVM、KPCA-IPOA-SVM、KPCA-WOA-LSSVM和KPCA-POA-LSSVM故障诊断模型进行对比,准确率分别提升了18.31%、11.53%、11.87%、7.46%。结果表明,所提出的变压器故障诊断模型有效提高了故障诊断的准确率,证明了该诊断模型具有一定的理论研究和实际工程应用意义。 展开更多
关键词 变压器 鹈鹕优化算法 最小二乘支持向量机 核主成分分析 故障诊断
在线阅读 下载PDF
通风对主动降噪潜在影响分析及风噪声抑制算法
18
作者 褚轶景 施宇 +2 位作者 颜宇航 孙海涛 牛锋 《载人航天》 北大核心 2025年第4期465-471,共7页
通风口处空气流动往往会引起基于前馈控制的主动降噪系统性能下降,针对通风口处风噪声控制问题,提出一种风噪声抑制主动降噪(ANC)算法。对风环境下滤波x最小均方(FxLMS)算法理论分析,并在消声室内验证ANC系统(ANC耳机)受风噪声影响。理... 通风口处空气流动往往会引起基于前馈控制的主动降噪系统性能下降,针对通风口处风噪声控制问题,提出一种风噪声抑制主动降噪(ANC)算法。对风环境下滤波x最小均方(FxLMS)算法理论分析,并在消声室内验证ANC系统(ANC耳机)受风噪声影响。理论分析及实验表明:ANC系统降噪效果随风速增加而降低。然后,在考虑风噪声频谱特性的基础上,结合整体最小二乘技术对传统FxLMS算法进行改进。仿真结果及消声室测量表明:提出的改进算法能有效抑制风噪声干扰,降噪性能接近无风时的情况,可将风环境的降噪量提高3~6 dB。 展开更多
关键词 风噪声 主动噪声控制 滤波x最小均方算法 整体最小二乘
在线阅读 下载PDF
基于IPSO-LSSVR算法的变电站工程造价预测方法 被引量:1
19
作者 王林峰 刘云 +2 位作者 亓彦珣 周波 李洁 《沈阳工业大学学报》 北大核心 2025年第2期168-175,共8页
【目的】电网建设项目中变电站工程造价的预测一直是影响项目成本管理的重要问题。然而,当前常用的变电站造价预测方法存在预测精度不足、计算效率低等问题,制约了预测模型在实际工程中的应用。为提高预测的准确性和计算效率,提出了一... 【目的】电网建设项目中变电站工程造价的预测一直是影响项目成本管理的重要问题。然而,当前常用的变电站造价预测方法存在预测精度不足、计算效率低等问题,制约了预测模型在实际工程中的应用。为提高预测的准确性和计算效率,提出了一种基于改进的粒子群优化(IPSO)算法和最小二乘支持向量回归(LSSVR)算法的变电站工程造价预测方法。【方法】考虑到常规变电站与智能变电站在设备、技术和运维上的差异,通过分析这两类变电站的特点,对相关数据进行了有针对性的预处理,以去除噪声数据,填补缺失值,并将有效信息转换为特征向量,作为LSSVR模型的输入。为避免传统粒子群(PSO)算法易陷入局部最优解的问题,引入了一种混合调节策略,对PSO算法的惯性权重和学习因子进行优化,使得优化过程更加稳定并具备较强的全局搜索能力。通过该策略IPSO算法可以在全局搜索和局部搜索之间实现更好的平衡。利用IPSO算法优化LSSVR模型参数,并建立变电站工程造价预测模型。【结果】通过与其他预测模型进行比较分析得出结论,所提出的IPSO-LSSVR算法在预测精度上具有明显优势。具体来说,基于该模型的预测误差显著低于其他方法,可以将偏差控制在5%以内。改进后的粒子群优化算法能够有效避免陷入局部最优,确保了LSSVR模型在各种情况下都能提供较为准确的预测结果。【结论】基于IPSO优化LSSVR算法的变电站工程造价预测方法,克服了传统预测方法在预测精度和计算效率上的不足。在实际应用中,该方法能够为电网建设项目的成本管理提供更加准确的预测依据,从而有助于项目预算的合理制定和资源的有效配置。 展开更多
关键词 变电站 工程造价 造价预测 粒子群算法 最小二乘支持向量回归 预测精度 运算效率 混合调节策略
在线阅读 下载PDF
基于Prony算法的高直流分量短路故障电流相控开断研究
20
作者 马飞越 魏莹 +5 位作者 李龙启 王达奇 项彬 王东宇 杜慧鑫 刘志远 《电工电能新技术》 北大核心 2025年第4期91-99,共9页
快速地检测短路故障的起始时刻,准确估计出故障电流关键参数并预测出有效的短路电流过零点是实现短路故障电流相控开断的关键。目前,随着电网规模的不断扩大,发生短路故障时,电力系统等效非周期分量衰减常数不断增加,系统面临短路电流... 快速地检测短路故障的起始时刻,准确估计出故障电流关键参数并预测出有效的短路电流过零点是实现短路故障电流相控开断的关键。目前,随着电网规模的不断扩大,发生短路故障时,电力系统等效非周期分量衰减常数不断增加,系统面临短路电流非周期分量衰减常数超标的问题,部分电网已经超过150 ms,但是,针对高直流分量衰减时间常数的短路电流零点预测研究较少。基于此,本文选择Prony算法研究含高直流分量短路故障电流相控开断的零点预测方法。首先采用F_(0)假设检验检测短路故障的初始时刻,继而启动Prony算法预测短路电流零点,经延时时间后控制断路器在较短燃弧时间开断。结果表明Prony算法适用于高直流分量衰减时间常数下短路故障的零点预测,其参数计算误差和零点预测误差小,波形拟合度高。对不同基波起始相角和直流衰减时间常数短路电流仿真,Prony算法零点预测产生的误差在±0.5 ms以内,并通过录波验证了算法的可行性。在相同参数情况下,采样时间5 ms的Prony算法零点预测效果优于递推最小二乘算法。 展开更多
关键词 故障电流相控开断 PRONY算法 F_(0)假设检验 过零点预测 递推最小二乘算法
在线阅读 下载PDF
上一页 1 2 120 下一页 到第
使用帮助 返回顶部