期刊文献+
共找到1,416篇文章
< 1 2 71 >
每页显示 20 50 100
ONLINE PARSIMONIOUS LEAST SQUARES SUPPORT VECTOR REGRESSION AND ITS APPLICATION 被引量:2
1
作者 赵永平 孙健国 王健康 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期280-287,共8页
A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response tim... A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response time is curtailed. Besides, an OPLS-SVR based analytical redundancy technique is presented to cope with the sensor failure and drift problems to guarantee that the provided signals for the aeroengine controller are correct and acceptable. Experiments on the sensor failure and drift show the effectiveness and the validity of the proposed analytical redundancy. 展开更多
关键词 support vector machines SENSORS least squares analytical redundancy aeroengines
在线阅读 下载PDF
NOVEL WEIGHTED LEAST SQUARES SUPPORT VECTOR REGRESSION FOR THRUST ESTIMATION ON PERFORMANCE DETERIORATION OF AERO-ENGINE 被引量:2
2
作者 苏伟生 赵永平 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期25-32,共8页
A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using ... A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration 展开更多
关键词 intelligent engine control least squares support vector machine performance deterioration
在线阅读 下载PDF
BOOSTING SPARSE LEAST SQUARES SUPPORT VECTOR REGRESSION (BSLSSVR) AND ITS APPLICATION TO THRUST ESTIMATION 被引量:2
3
作者 赵永平 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期254-261,共8页
In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of ... In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰. 展开更多
关键词 least squares support vector machines direct thrust control boosting technique
在线阅读 下载PDF
Prediction of chaotic systems with multidimensional recurrent least squares support vector machines 被引量:2
4
作者 孙建成 周亚同 罗建国 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1208-1215,共8页
In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performa... In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performance, the high-dimensional space, which provides more information on the system than the scalar time series, is first reconstructed utilizing Takens's embedding theorem. Then the MDRLS-SVM instead of traditional RLS-SVM is used in the high- dimensional space, and the prediction performance can be improved from the point of view of reconstructed embedding phase space. In addition, the MDRLS-SVM algorithm is analysed in the context of noise, and we also find that the MDRLS-SVM has lower sensitivity to noise than the RLS-SVM. 展开更多
关键词 chaotic systems support vector machines least squares noise
在线阅读 下载PDF
Fault diagnosis using a probability least squares support vector classification machine 被引量:4
5
作者 GAO Yang, WANG Xuesong, CHENG Yuhu, PAN Jie School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou 221116, China 《Mining Science and Technology》 EI CAS 2010年第6期917-921,共5页
Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines ... Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines is addressed by a proposed Probability Least Squares Support Vector Classification Machine (PLSSVCM). Samples that cannot be definitely determined as belonging to one class will be assigned to a class by the PLSSVCM based on a probability value. This gives the classification results both a qualitative explanation and a quantitative evaluation. Simulation results of a fault diagnosis show that the correct rate of the PLSSVCM is 100%. Even though samples are noisy, the PLSSVCM still can effectively realize multi-class fault diagnosis of a roller bearing. The generalization property of the PLSSVCM is better than that of a neural network and a LSSVCM. 展开更多
关键词 fault diagnosis PROBABILITY least squares support vector classification machine roller bearing
在线阅读 下载PDF
Fault diagnosis of power-shift steering transmission based on multiple outputs least squares support vector regression 被引量:2
6
作者 张英锋 马彪 +2 位作者 房京 张海岭 范昱珩 《Journal of Beijing Institute of Technology》 EI CAS 2011年第2期199-204,共6页
A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict t... A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict the future state of the power-shift steering transmission (PSST). A prediction model of PSST was gotten with multiple outputs LS-SVR. The model performance was greatly influenced by the penalty parameter γ and kernel parameter σ2 which were optimized using cross validation method. The training and prediction of the model were done with spectrometric oil analysis data. The predictive and actual values were compared and a fault in the second PSST was found. The research proved that this method had good accuracy in PSST fault prediction, and any possible problem in PSST could be found through a comparative analysis. 展开更多
关键词 least squares support vector regression(LS-SVR) fault diagnosis power-shift steering transmission (PSST)
在线阅读 下载PDF
Least Squares Support Vector Machine Based Real-Time Fault Diagnosis Model for Gas Path Parameters of Aero Engines 被引量:2
7
作者 王旭辉 黄圣国 +2 位作者 王烨 刘永建 舒平 《Journal of Southwest Jiaotong University(English Edition)》 2009年第1期22-26,共5页
Least squares support vector machine (LS-SVM) is applied in gas path fault diagnosis for aero engines. Firstly, the deviation data of engine cruise are analyzed. Then, model selection is conducted using pattern sear... Least squares support vector machine (LS-SVM) is applied in gas path fault diagnosis for aero engines. Firstly, the deviation data of engine cruise are analyzed. Then, model selection is conducted using pattern search method. Finally, by decoding aircraft communication addressing and reporting system (ACARS) report, a real-time cruise data set is acquired, and the diagnosis model is adopted to process data. In contrast to the radial basis function (RBF) neutral network, LS-SVM is more suitable for real-time diagnosis of gas turbine engine. 展开更多
关键词 Engine diagnosis Gas path least squares support vector machine Pattern search
在线阅读 下载PDF
Improved Scheme for Fast Approximation to Least Squares Support Vector Regression
8
作者 张宇宸 赵永平 +3 位作者 宋成俊 侯宽新 脱金奎 叶小军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第4期413-419,共7页
The solution of normal least squares support vector regression(LSSVR)is lack of sparseness,which limits the real-time and hampers the wide applications to a certain degree.To overcome this obstacle,a scheme,named I2FS... The solution of normal least squares support vector regression(LSSVR)is lack of sparseness,which limits the real-time and hampers the wide applications to a certain degree.To overcome this obstacle,a scheme,named I2FSA-LSSVR,is proposed.Compared with the previously approximate algorithms,it not only adopts the partial reduction strategy but considers the influence between the previously selected support vectors and the willselected support vector during the process of computing the supporting weights.As a result,I2FSA-LSSVR reduces the number of support vectors and enhances the real-time.To confirm the feasibility and effectiveness of the proposed algorithm,experiments on benchmark data sets are conducted,whose results support the presented I2FSA-LSSVR. 展开更多
关键词 support vector regression kernel method least squares SPARSENESS
在线阅读 下载PDF
Design of Ballistic Consistency Based on Least Squares Support Vector Machine and Particle Swarm Optimization
9
作者 张宇宸 杜忠华 戴炜 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第5期549-554,共6页
In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal f... In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal firing table is the ballistic matching for two types of projectiles.Therefore,a method is proposed in the process of designing new type of projectile.The least squares support vector machine is utilized to build the ballistic trajectory model of the original projectile,thus it is viable to compare the two trajectories.Then the particle swarm optimization is applied to find the combination of trajectory parameters which meet the criterion of ballistic matching best.Finally,examples show the proposed method is valid and feasible. 展开更多
关键词 ballistic matching least squares support vector machine particle swarm optimization curve fitting
在线阅读 下载PDF
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
10
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
在线阅读 下载PDF
Small-time scale network traffic prediction based on a local support vector machine regression model 被引量:10
11
作者 孟庆芳 陈月辉 彭玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2194-2199,共6页
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the... In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements. 展开更多
关键词 network traffic small-time scale nonlinear time series analysis support vector machine regression model
在线阅读 下载PDF
Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method 被引量:1
12
作者 孙重华 江凡 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期1-6,共6页
In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using ... In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method. 展开更多
关键词 protein binding site support vector machine regression cross-validation neighbour residue
在线阅读 下载PDF
Machine learning methods for predicting CO_(2) solubility in hydrocarbons
13
作者 Yi Yang Binshan Ju +1 位作者 Guangzhong Lü Yingsong Huang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3340-3349,共10页
The application of carbon dioxide(CO_(2)) in enhanced oil recovery(EOR) has increased significantly, in which CO_(2) solubility in oil is a key parameter in predicting CO_(2) flooding performance. Hydrocarbons are the... The application of carbon dioxide(CO_(2)) in enhanced oil recovery(EOR) has increased significantly, in which CO_(2) solubility in oil is a key parameter in predicting CO_(2) flooding performance. Hydrocarbons are the major constituents of oil, thus the focus of this work lies in investigating the solubility of CO_(2) in hydrocarbons. However, current experimental measurements are time-consuming, and equations of state can be computationally complex. To address these challenges, we developed an artificial intelligence-based model to predict the solubility of CO_(2) in hydrocarbons under varying conditions of temperature, pressure, molecular weight, and density. Using experimental data from previous studies,we trained and predicted the solubility using four machine learning models: support vector regression(SVR), extreme gradient boosting(XGBoost), random forest(RF), and multilayer perceptron(MLP).Among four models, the XGBoost model has the best predictive performance, with an R^(2) of 0.9838.Additionally, sensitivity analysis and evaluation of the relative impacts of each input parameter indicate that the prediction of CO_(2) solubility in hydrocarbons is most sensitive to pressure. Furthermore, our trained model was compared with existing models, demonstrating higher accuracy and applicability of our model. The developed machine learning-based model provides a more efficient and accurate approach for predicting CO_(2) solubility in hydrocarbons, which may contribute to the advancement of CO_(2)-related applications in the petroleum industry. 展开更多
关键词 CO_(2)solubility machine learning support vector regression Extreme gradient boosting Random forest Multi-layer perceptron
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
14
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
新能源汽车驱动电机冷却系统劣化故障预测
15
作者 柳炽伟 黄韵迪 《汽车安全与节能学报》 北大核心 2025年第2期277-285,共9页
提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行... 提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行降维重构处理,蝗虫算法(GOA)用来优化最小二乘支持向量机(LSSVM)的参数。通过实车故障试验采集样本数据,分别输入至LSSVM预测模型、PCA-PSO-SVM及PCA-GOA-LSSVM模型,进行对比测试。结果表明:基于PCA-GOA-LSSVM的多分类器预测模型准确率达91.41%、精确率达86.25%,高于对比的预测模型,可准确提醒及时维护车辆及有效判断故障类型;该模型能够用于新能源汽车驱动电机冷却系统性能劣化预测和故障诊断中。 展开更多
关键词 新能源汽车 驱动电机冷却系统 故障预测 最小二乘支持向量机(LSSVM) 蝗虫算法(GOA) 主成分分析(PCA)
在线阅读 下载PDF
基于主成分降维的海面散射系数快速预测方法
16
作者 刘悦 董春雷 +1 位作者 孟肖 郭立新 《电波科学学报》 北大核心 2025年第1期21-28,共8页
海面电磁散射特性与海浪参数、雷达参数等多种影响因素存在复杂的依赖关系,传统大场景海面电磁散射预测模型在面临多参数高维度映射时容易出现过拟合问题,选择合适的降维方法和模型参数是提高模型性能的有效手段。本文提出了一种基于主... 海面电磁散射特性与海浪参数、雷达参数等多种影响因素存在复杂的依赖关系,传统大场景海面电磁散射预测模型在面临多参数高维度映射时容易出现过拟合问题,选择合适的降维方法和模型参数是提高模型性能的有效手段。本文提出了一种基于主成分分析(principal components analysis,PCA)降维的海面电磁散射快速预测方法。首先,利用文氏海谱和海面电磁散射模型构建后向散射系数仿真数据集;然后,引入PCA法降低仿真参数维度,提取主要特征;最后,基于最小二乘支持向量回归机(least squares support vector regression,LSSVR)建立非线性回归模型,输入降维数据进行预测,并评估预测结果的精度。通过对比不同降维比例的预测结果,分析了主成分降维对模型性能的影响。结果表明,对仿真参数进行适当降维能够显著增加模型精度,提升模型的解释能力。当降维比例为25%左右时模型精度达到最优,当降维比例大于40%时模型精度显著下降,不利于海面电磁散射预测。 展开更多
关键词 主成分分析(PCA) 海面电磁散射预测 最小二乘支持向量回归机(LSSVR) 半确定性面元法 参数降维
在线阅读 下载PDF
土石坝渗流预测的BiTCN-Attention-LSSVM模型研究
17
作者 傅蜀燕 杨石勇 +2 位作者 陈德辉 王子轩 欧斌 《水资源与水工程学报》 北大核心 2025年第1期118-128,共11页
为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN... 为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN从前、后两个方向捕获时序数据中的长期依赖关系,引入Attention机制帮助模型专注于与预测相关的关键局部特征,并将BiTCN-Attention深度处理后的特征输入LSSVM模型中进行预测,最后以2个不同的数据集分析了模型的预测效果。案例分析表明:与LSSVM、CNN-LSSVM和TCN-LSSVM相比,BiTCN-Attention-LSSVM模型预测的各项评价指标均为最优,在土石坝测压管水位预测中展现出更高的模型精度和稳定性;BiTCN与Attention的相互结合能够更好地提取时序数据中的相互依赖关系,将BiTCN-Attention提取的特征输入LSSVM中进行预测可获得良好的预测性能,数据集扩充处理后有效提高了模型的学习能力。 展开更多
关键词 土石坝测压管水位 渗流预测 双向时序卷积神经网络 注意力机制 最小二乘支持向量机
在线阅读 下载PDF
基于支持向量回归(SVR)的马尾松木材脱脂率预测
18
作者 郭佳伦 钟浩珉 +1 位作者 赵俊博 陈瑶 《北京林业大学学报》 北大核心 2025年第3期151-161,共11页
【目的】脱脂处理是提升松木制品性能的重要手段,但传统脱脂率检测方法耗时且破坏试样。本研究旨在探索一种快速、无损的脱脂率检测方法,基于木材表面颜色变化,利用支持向量回归(SVR)构建脱脂率预测模型。【方法】采用氨气-水蒸气在高... 【目的】脱脂处理是提升松木制品性能的重要手段,但传统脱脂率检测方法耗时且破坏试样。本研究旨在探索一种快速、无损的脱脂率检测方法,基于木材表面颜色变化,利用支持向量回归(SVR)构建脱脂率预测模型。【方法】采用氨气-水蒸气在高温条件下对马尾松木材进行处理,分析不同条件对木材表面颜色参数和脱脂率的影响,探讨其相关性。利用3种不同的核函数(多项式核函数、Sigmoid核函数、径向基函数)构建基于SVR的脱脂率预测模型,并通过比较选择最优模型。【结果】经氨气-水蒸气热处理脱脂后,马尾松表面明度(L^(*))和黄蓝指数(b^(*))低于未处理木材,红绿指数(a^(*))则高于未处理木材。随着氨水质量分数和处理温度的增加,L^(*)、a^(*)和b^(*)呈逐渐降低趋势,总色差(ΔE^(*))逐渐增大,脱脂率随之提高。在180℃、较高氨水质量分数的处理条件下,ΔE^(*)达到最大值58.89,脱脂率达到最高值70.00%。颜色参数与脱脂率呈局部二次函数关系,相关系数最高为0.713。在以径向基函数为核函数的SVR模型中,预测含脂率和脱脂率的均方根误差分别为0.523和4.315,决定系数分别为0.847和0.823,该预测模型可应用于脱脂率检测的前期筛选。【结论】本研究成功构建了基于SVR的马尾松木材脱脂率预测模型。该模型在脱脂率检测的前期筛选中具有一定的应用价值,能够在一定程度上实现检测过程的快速、简便和无损化。本研究为马尾松木材脱脂率检测的效率提升和质量改进提供了一种新的方法。 展开更多
关键词 支持向量回归 机器学习 预测模型 脱脂 马尾松 颜色参数
在线阅读 下载PDF
基于Stackelberg博弈与改进深度神经网络的多源调频协调策略研究
19
作者 王永文 赵雪锋 +5 位作者 李夏叶 詹巍 单怡琳 闫启明 赵泽宇 杨锡运 《全球能源互联网》 北大核心 2025年第1期76-86,共11页
随着电网中新能源渗透率的增加,传统火电机组调频已无法满足电能质量需求。针对多源场景中传统自动发电控制系统区域控制误差较大的问题,提出一种基于Stackelberg博弈与改进深度神经网络(Stackelberg game and improved deep neural net... 随着电网中新能源渗透率的增加,传统火电机组调频已无法满足电能质量需求。针对多源场景中传统自动发电控制系统区域控制误差较大的问题,提出一种基于Stackelberg博弈与改进深度神经网络(Stackelberg game and improved deep neural network,S-DNN)的多源调频协调策略。首先,设计一种改进多层次深度神经网络(deep neural network,DNN),由DNN层、自然梯度提升层、最小二乘支持向量机层顺序递进完成预测、评价、执行动作,输出总调频功率指令。该多层次总调频功率输出模型考虑新能源渗透率对调频系统的动态影响,充分学习历史信息与实时状态中更多的特征,提高了时序调频指令精度。然后基于Stackelberg博弈理论,考虑多源调频特征与协同作用,优化各调频源间的功率分配,提高系统二次调频的经济性。最后,通过算例分析验证了提出的多源调频协调策略的有效性。与传统调频方法相比,所提出的S-DNN多源调频协调策略可有效降低区域控制误差与频率偏差,并降低调频成本。 展开更多
关键词 多源系统 二次调频 STACKELBERG博弈 深度神经网络 自然梯度提升 最小二乘支持向量机
在线阅读 下载PDF
基于IPOA-SVR模型的边坡安全系数预测
20
作者 张佳琳 王孝东 +4 位作者 吴雅菡 水宽 张玉 程玥淞 杜青文 《有色金属(矿山部分)》 2025年第1期115-123,共9页
安全系数是用来评估边坡稳定性的重要指标之一,复杂的边坡系统导致安全系数预测存在不确定性。因此,为了获得更加可靠的安全系数,同时解决鹈鹕算法(POA)随着迭代次数的增加易陷入局部最优的缺点,提出了一种融合多策略的鹈鹕算法(IPOA)... 安全系数是用来评估边坡稳定性的重要指标之一,复杂的边坡系统导致安全系数预测存在不确定性。因此,为了获得更加可靠的安全系数,同时解决鹈鹕算法(POA)随着迭代次数的增加易陷入局部最优的缺点,提出了一种融合多策略的鹈鹕算法(IPOA)与支持向量机(SVR)结合的回归模型来预测边坡安全系数。首先,融合多策略将原始的鹈鹕算法进行改进;再运用改进的鹈鹕算法与支持向量机结合,选取六个影响因素作为IPOA-SVR模型的输入层指标并对模型进行训练,得到IPOA-SVR边坡稳定性预测模型;最后,分别与KNN、RF和Adaboost模型对比,并计算各个模型在训练集和测试集上的均方误差(MSE),以此来验证IPOA-SVR模型的优越性。实验结果显示:与其他模型相比,IPOA-SVR模型寻优性能强,在测试集上的均方误差为0.030 9、相关系数为0.91,说明本文对POA算法所用策略的有效性,IPOA-SVR模型可以为边坡失稳灾害的相关预测提供坚实的技术基础。 展开更多
关键词 安全系数 鹈鹕算法 支持向量机 边坡稳定性 均方误差
在线阅读 下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部