The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was ...The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was presented and then the experimental setup of PECF system was established.The Taguchi method was introduced to assess the effect of finishing parameters on the gear tooth surface roughness,and the training data was also obtained through experiments.The comparison between the predicted values and the experimental values under the same conditions was carried out.The results show that the predicted values are found to be approximately consistent with the experimental values.The mean absolute percent error (MAPE) is 2.43% for the surface roughness and 2.61% for the applied voltage.展开更多
Aimed at uncertainties and model's impreciseness, nonlinearity and time-variability of depth control system in autonomous underwater vehicle (AUV), a depth predictive control method was put forward based on rough ...Aimed at uncertainties and model's impreciseness, nonlinearity and time-variability of depth control system in autonomous underwater vehicle (AUV), a depth predictive control method was put forward based on rough set (RS) and least squares support vector machine (LSSVM). By using RS theory, the monitor data attribute of AUV was reduced to eliminate the redundant information and to improve efficiency. Then, LSSVM model was trained by using the reduced rules, and its parameters were optimized by using chaos theory for the higher accurate control. Taken an AUV typed NPS Phoenix as an example, its depth step response, horizontal rudder and pitch change were simulated. The simulation results show that the method improves the model's accuracy and has better real-time response, fault-tolerant ability, reliability and strong anti-interfere capability.展开更多
基金Supported by the National Creative Research Groups Science Foundation of P.R. China (NCRGSFC: 60421002) and National High Technology Research and Development Program of China (863 Program) (2006AA04 Z182)
基金Project(90923022) supported by the National Natural Science Foundation of ChinaProject(2009220022) supported by Liaoning Science and Technology Foundation,China
文摘The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was presented and then the experimental setup of PECF system was established.The Taguchi method was introduced to assess the effect of finishing parameters on the gear tooth surface roughness,and the training data was also obtained through experiments.The comparison between the predicted values and the experimental values under the same conditions was carried out.The results show that the predicted values are found to be approximately consistent with the experimental values.The mean absolute percent error (MAPE) is 2.43% for the surface roughness and 2.61% for the applied voltage.
文摘Aimed at uncertainties and model's impreciseness, nonlinearity and time-variability of depth control system in autonomous underwater vehicle (AUV), a depth predictive control method was put forward based on rough set (RS) and least squares support vector machine (LSSVM). By using RS theory, the monitor data attribute of AUV was reduced to eliminate the redundant information and to improve efficiency. Then, LSSVM model was trained by using the reduced rules, and its parameters were optimized by using chaos theory for the higher accurate control. Taken an AUV typed NPS Phoenix as an example, its depth step response, horizontal rudder and pitch change were simulated. The simulation results show that the method improves the model's accuracy and has better real-time response, fault-tolerant ability, reliability and strong anti-interfere capability.