期刊文献+
共找到395篇文章
< 1 2 20 >
每页显示 20 50 100
Generalized Predictive Control with Online Least Squares Support Vector Machines 被引量:41
1
作者 LI Li-Juan SU Hong-Ye CHU Jian 《自动化学报》 EI CSCD 北大核心 2007年第11期1182-1188,共7页
这份报纸基于能有效地处理非线性的系统的联机最少的广场支持向量机器(LS-SVM ) 建议一个实际概括预兆的控制(GPC ) 算法。在每个采样时期,算法递归地由增加新数据对并且在实时性质上从考虑删除最不重要的修改模型。删除的数据对被 lag... 这份报纸基于能有效地处理非线性的系统的联机最少的广场支持向量机器(LS-SVM ) 建议一个实际概括预兆的控制(GPC ) 算法。在每个采样时期,算法递归地由增加新数据对并且在实时性质上从考虑删除最不重要的修改模型。删除的数据对被 lagrange 的绝对值从最后一个采样时期更多样地决定。当增加新数据对并且删除存在的时,纸给模型参数的递归的算法分别地,一个大矩阵的倒置被避免,存储器能被算法完全控制。非线性的 LS-SVM 模型在每个采样时期在 GPC 算法被使用。抵销过程的 pH 上的概括预兆的控制的实验显示出建议算法的有效性和实物。 展开更多
关键词 普遍预测控制 支持向量机 联机模型 pH补偿过程 模糊控制
在线阅读 下载PDF
Prediction method for surface finishing of spiral bevel gear tooth based on least square support vector machine
2
作者 马宁 徐文骥 +2 位作者 王续跃 魏泽飞 庞桂兵 《Journal of Central South University》 SCIE EI CAS 2011年第3期685-689,共5页
The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was ... The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was presented and then the experimental setup of PECF system was established.The Taguchi method was introduced to assess the effect of finishing parameters on the gear tooth surface roughness,and the training data was also obtained through experiments.The comparison between the predicted values and the experimental values under the same conditions was carried out.The results show that the predicted values are found to be approximately consistent with the experimental values.The mean absolute percent error (MAPE) is 2.43% for the surface roughness and 2.61% for the applied voltage. 展开更多
关键词 pulse electrochemical finishing (PECF) surface roughness least squares support vector machine (lssvm PREDICTION
在线阅读 下载PDF
基于BPSO-PSO-LSSVM算法的上肢sEMG分类
3
作者 贠今天 苗冠 +1 位作者 李帅 耿梓敬 《科学技术与工程》 北大核心 2025年第18期7686-7692,共7页
作为与人体运动密切相关的生理信号,表面肌电(surface electromyography, sEMG)信号的解析在人机交互领域具有重要的作用。针对肌电信号分类效率和精度难以兼顾的问题,提出了一种特征筛选与分类器超参数优化相结合的上肢sEMG分类方法,... 作为与人体运动密切相关的生理信号,表面肌电(surface electromyography, sEMG)信号的解析在人机交互领域具有重要的作用。针对肌电信号分类效率和精度难以兼顾的问题,提出了一种特征筛选与分类器超参数优化相结合的上肢sEMG分类方法,该方法采用二进制粒子群优化(binary particle swarm optimization, BPSO)算法对特征进行筛选后,进一步采用粒子群优化(particle swarm optimization, PSO)算法调整最小二乘支持向量机(least squares support vector machine, LSSVM)的超参数。通过采集人上体4个部位的表面肌电信号并提取其中48维特征,对上肢常见的4种动作进行分类实验,结果表明,BPSO-PSO-LSSVM算法仅保留肌电数据的21维特征,得到的平均分类准确率达到97.54%,证明该方法可以有效筛选出用于上肢动作分类的最佳特征组合,并且提高运动分类的准确率。 展开更多
关键词 表面肌电信号 特征选择 二进制粒子群优化 粒子群优化 动作分类 最小二乘支持向量机
在线阅读 下载PDF
土石坝渗流预测的BiTCN-Attention-LSSVM模型研究
4
作者 傅蜀燕 杨石勇 +2 位作者 陈德辉 王子轩 欧斌 《水资源与水工程学报》 北大核心 2025年第1期118-128,共11页
为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN... 为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN从前、后两个方向捕获时序数据中的长期依赖关系,引入Attention机制帮助模型专注于与预测相关的关键局部特征,并将BiTCN-Attention深度处理后的特征输入LSSVM模型中进行预测,最后以2个不同的数据集分析了模型的预测效果。案例分析表明:与LSSVM、CNN-LSSVM和TCN-LSSVM相比,BiTCN-Attention-LSSVM模型预测的各项评价指标均为最优,在土石坝测压管水位预测中展现出更高的模型精度和稳定性;BiTCN与Attention的相互结合能够更好地提取时序数据中的相互依赖关系,将BiTCN-Attention提取的特征输入LSSVM中进行预测可获得良好的预测性能,数据集扩充处理后有效提高了模型的学习能力。 展开更多
关键词 土石坝测压管水位 渗流预测 双向时序卷积神经网络 注意力机制 最小二乘支持向量机
在线阅读 下载PDF
基于PSO-LSSVM-BP模型的高边坡力学参数反分析及稳定性评价 被引量:5
5
作者 徐卫亚 陈世壮 +5 位作者 张贵科 胡明涛 黄威 许晓逸 张海龙 王如宾 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期52-59,共8页
基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)算法构建非线性映射关系,结合反向传播(BP)神经网络对非线性映射关系生成的数据库进行机器学习,构建了PSO-LSSVM-BP模型确定最优岩体力学参数。PSO-LSSVM-BP模型以高边坡监测位移数... 基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)算法构建非线性映射关系,结合反向传播(BP)神经网络对非线性映射关系生成的数据库进行机器学习,构建了PSO-LSSVM-BP模型确定最优岩体力学参数。PSO-LSSVM-BP模型以高边坡监测位移数据作为输入信息,通过反分析获得高边坡岩体力学参数,将反分析参数用于FLAC3D位移数值计算,结果表明模拟结果与监测数据吻合较好,验证了该模型的可行性和有效性。基于PSO-LSSVM-BP模型,对不同蓄水位下两河口水电站进水口高边坡稳定性进行了评价,发现水位是影响边坡稳定性的主要因素,随着水位上升,边坡位移逐渐增大,其表面和断层处损伤程度加深,边坡局部点安全系数有所下降,但整体点安全系数均大于1.30,有一定安全裕度。 展开更多
关键词 高边坡 力学参数反分析 粒子群优化 最小二乘向量机 反向传播神经网络 两河口水电站
在线阅读 下载PDF
基于IPOA-LSSVM模型的高压直流输电线路故障定位 被引量:1
6
作者 商立群 刘晗 +3 位作者 郝天奇 李钊 李朝彪 邓力文 《南京信息工程大学学报》 CAS 北大核心 2024年第5期667-677,共11页
故障定位在长距离高压直流输电系统中起着至关重要的作用.针对线路衰减系数计算不准和二次波头难以捕捉的问题,提出了一种改进鹈鹕优化算法(IPOA)优化最小二乘支持向量(LSSVM)的故障定位模型.根据行波衰减原理,推导故障距离和线路两端... 故障定位在长距离高压直流输电系统中起着至关重要的作用.针对线路衰减系数计算不准和二次波头难以捕捉的问题,提出了一种改进鹈鹕优化算法(IPOA)优化最小二乘支持向量(LSSVM)的故障定位模型.根据行波衰减原理,推导故障距离和线路两端线模分量模极大值比的计算公式,发现二者具有非线性关系.使用LSSVM泛化二者之间的关系,将改进后的POA算法对LSSVM的关键参数进行寻优,建立IPOA-LSSVM故障定位模型.通过在两端采集故障信号,对其进行小波变换得到首波头幅值比作为模型的输入量,故障距离作为输出量进行仿真验证.仿真结果表明,该模型不受过渡电阻和故障类型的影响,能够可靠准确地定位. 展开更多
关键词 故障定位 高压直流输电系统 首波头幅值比 改进鹈鹕优化算法 最小二乘支持向量机
在线阅读 下载PDF
基于KPCA-LSSVM的回采工作面瓦斯涌出量的预测 被引量:7
7
作者 陈巧军 余浩 +2 位作者 李艳昌 谭依佳 李奕 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第4期78-84,共7页
为了提高瓦斯涌出量预测精度,针对瓦斯涌出量影响因素具有线性重叠、高维非线性等问题,提出使用核主成分分析法(KPCA)对影响因素进行非线性降维。选取沈阳某矿30组样本数据,以前24组数据作为训练集,后6组数据作为测试集,将确定后的核主... 为了提高瓦斯涌出量预测精度,针对瓦斯涌出量影响因素具有线性重叠、高维非线性等问题,提出使用核主成分分析法(KPCA)对影响因素进行非线性降维。选取沈阳某矿30组样本数据,以前24组数据作为训练集,后6组数据作为测试集,将确定后的核主成分作为最小二乘支持向量机(LSSVM)的输入变量,建立KPCA-LSSVM预测模型,将预测结果与PCA-LSSVM、LSSVM、多元非线性回归、KPCA-BP神经网络、PCA-BP神经网络以及BP神经网络预测结果进行对比。以最大相对误差绝对值作为模型预测精度的评价指标。研究结果表明:当选取前4个核主成分时,即达到模型训练要求。KPCA-LSSVM模型的预测最大相对误差绝对值为5.89%,预测精度均优于其他6种对比模型。研究结果可为实现瓦斯涌出量高精度预测提供参考。 展开更多
关键词 瓦斯涌出量的预测 核主成分分析法(KPCA) 最小二乘支持向量机(lssvm) 相对误差绝对值
在线阅读 下载PDF
基于误差修正和VMD-ICPA-LSSVM的短期风速预测建模 被引量:3
8
作者 钟琳 颜七笙 《南京信息工程大学学报》 CAS 北大核心 2024年第2期247-260,共14页
精准的风速预测是将风能大规模应用到电力系统中的关键,而风速序列的随机性和波动性等特点使得风速预测难度增加.为增强风速序列的可预测性,采用Logistic混沌映射策略、自适应参数调整策略以及引入变异策略对食肉植物算法(CPA)进行改进... 精准的风速预测是将风能大规模应用到电力系统中的关键,而风速序列的随机性和波动性等特点使得风速预测难度增加.为增强风速序列的可预测性,采用Logistic混沌映射策略、自适应参数调整策略以及引入变异策略对食肉植物算法(CPA)进行改进,并提出了基于误差修正和VMD-ICPA-LSSVM的短期风速预测模型.首先将气象因子作为最小二乘支持向量机(LSSVM)的输入对风速进行预测,获得误差序列.再利用K-L散度自适应地确定变分模态分解(VMD)的参数,并对误差序列进行分解.结合改进食肉植物算法(ICPA)优化LSSVM可调参数的方法来预测分解的子序列.叠加各子序列预测结果后对原始预测序列进行误差修正,进而得到最终风速预测值.实验结果表明,与其他模型相比,所提模型有着更好的预测精度和泛化性能. 展开更多
关键词 变分模态分解 食肉植物算法 最小二乘支持向量机 误差修正 风速预测
在线阅读 下载PDF
Depth Control for AUV Based on RS-LSSVM
9
作者 宋晓茹 宋保维 +1 位作者 雷志勇 梁庆卫 《Defence Technology(防务技术)》 CAS 2012年第2期79-85,共7页
Aimed at uncertainties and model's impreciseness, nonlinearity and time-variability of depth control system in autonomous underwater vehicle (AUV), a depth predictive control method was put forward based on rough ... Aimed at uncertainties and model's impreciseness, nonlinearity and time-variability of depth control system in autonomous underwater vehicle (AUV), a depth predictive control method was put forward based on rough set (RS) and least squares support vector machine (LSSVM). By using RS theory, the monitor data attribute of AUV was reduced to eliminate the redundant information and to improve efficiency. Then, LSSVM model was trained by using the reduced rules, and its parameters were optimized by using chaos theory for the higher accurate control. Taken an AUV typed NPS Phoenix as an example, its depth step response, horizontal rudder and pitch change were simulated. The simulation results show that the method improves the model's accuracy and has better real-time response, fault-tolerant ability, reliability and strong anti-interfere capability. 展开更多
关键词 automatic control technology rough set least squares support vector machine autonomous underwater vehicle AUV depth control
在线阅读 下载PDF
新能源汽车驱动电机冷却系统劣化故障预测
10
作者 柳炽伟 黄韵迪 《汽车安全与节能学报》 北大核心 2025年第2期277-285,共9页
提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行... 提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行降维重构处理,蝗虫算法(GOA)用来优化最小二乘支持向量机(LSSVM)的参数。通过实车故障试验采集样本数据,分别输入至LSSVM预测模型、PCA-PSO-SVM及PCA-GOA-LSSVM模型,进行对比测试。结果表明:基于PCA-GOA-LSSVM的多分类器预测模型准确率达91.41%、精确率达86.25%,高于对比的预测模型,可准确提醒及时维护车辆及有效判断故障类型;该模型能够用于新能源汽车驱动电机冷却系统性能劣化预测和故障诊断中。 展开更多
关键词 新能源汽车 驱动电机冷却系统 故障预测 最小二乘支持向量机(lssvm) 蝗虫算法(GOA) 主成分分析(PCA)
在线阅读 下载PDF
基于GA-LSSVM和近红外傅里叶变换的霉变板栗识别 被引量:34
11
作者 周竹 李小昱 +3 位作者 李培武 高云 展慧 刘洁 《农业工程学报》 EI CAS CSCD 北大核心 2011年第3期331-335,共5页
为克服板栗近红外光谱变量多、共线性强等缺点,该文对标准正态变量变换预处理后的板栗近红外光谱进行傅里叶变换,并用不同方法建模,提高识别精度。采用试探法提取近红外光谱傅里叶系数,建立了基于最小二乘支持向量机分类器的霉变板栗识... 为克服板栗近红外光谱变量多、共线性强等缺点,该文对标准正态变量变换预处理后的板栗近红外光谱进行傅里叶变换,并用不同方法建模,提高识别精度。采用试探法提取近红外光谱傅里叶系数,建立了基于最小二乘支持向量机分类器的霉变板栗识别模型。当提取前35点傅里叶系数时,板栗的平均识别正确率为93.56%;构造GA-LSSVM算法,建立的霉变板栗识别模型所用傅里叶系数减少为13点,对测试集中合格板栗、表面霉变板栗和内部霉变板栗的平均识别正确率分别为95.89%、100%和98.25%,板栗的总体平均识别正确率提高到97.54%。为霉变板栗的识别提供了快速鉴别分析方法。 展开更多
关键词 遗传算法(GA) 识别 傅里叶变换 板栗 近红外光谱 最小二乘支持向量机(lssvm)
在线阅读 下载PDF
基于IPSO-LSSVM的风电功率短期预测研究 被引量:28
12
作者 王贺 胡志坚 +2 位作者 张翌晖 张子泳 张承学 《电力系统保护与控制》 EI CSCD 北大核心 2012年第24期107-112,共6页
风电功率预测的关键是预测模型的选择和模型性能的优化。选择最小二乘支持向量机(least squares support vector machine,LSSVM)作为风电功率预测模型,使用改进的粒子群算法(improved particle swarm optimization algorithm,IPSO)对影... 风电功率预测的关键是预测模型的选择和模型性能的优化。选择最小二乘支持向量机(least squares support vector machine,LSSVM)作为风电功率预测模型,使用改进的粒子群算法(improved particle swarm optimization algorithm,IPSO)对影响最小二乘支持向量机回归性能的参数进行优化。在建立了改进的粒子群算法优化最小二乘支持向量机(LSSVM)的风电功率预测模型后,运用该模型对广西某风电场进行了仿真研究。为了对比研究,同时使用前馈(back propagation,BP)神经网络模型和支持向量机(support vector machine,SVM)模型进行了预测。最后采用多种误差指标对三种模型的预测结果进行综合分析。结果表明,使用改进的粒子群算法优化最小二乘向量机(IPSO-LSSVM)的风电功率预测模型具有较高的预测精度。 展开更多
关键词 风电功率预测 改进粒子群算法 最小二乘支持向量机 IPSO-lssvm 误差分析
在线阅读 下载PDF
基于蚁群算法和LSSVM的锅炉燃烧优化预测控制 被引量:21
13
作者 龙文 梁昔明 +1 位作者 龙祖强 李朝辉 《电力自动化设备》 EI CSCD 北大核心 2011年第11期89-93,共5页
火电厂锅炉燃烧过程是一个复杂的多输入/多输出系统,具有高度非线性、强耦合的特点。借助燃烧特性试验数据,利用最小二乘支持向量机(LSSVM)建立锅炉燃烧模型,使用非线性模型预测控制(MPC)算法对锅炉燃烧过程进行优化和控制。提出一种改... 火电厂锅炉燃烧过程是一个复杂的多输入/多输出系统,具有高度非线性、强耦合的特点。借助燃烧特性试验数据,利用最小二乘支持向量机(LSSVM)建立锅炉燃烧模型,使用非线性模型预测控制(MPC)算法对锅炉燃烧过程进行优化和控制。提出一种改进蚁群算法用于求解预测控制算法中的非线性优化问题,采用动态随机抽取方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索。实例表明,该方法对锅炉燃烧过程具有较好的控制效果。 展开更多
关键词 最小二乘支持向量机 蚁群算法 燃烧 优化 预测控制 电厂 支持向量机
在线阅读 下载PDF
改进LSSVM迁移学习方法的轴承故障诊断 被引量:83
14
作者 陈超 沈飞 严如强 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第1期33-40,共8页
机械系统存在的外部环境干扰、变工况条件以及无法直接测量等因素,导致获取的数据常常不满足传统机器学习的两个前提:训练与测试数据分布相同以及目标诊断数据量充足,从而影响诊断模型的泛化能力。针对上述问题,提出一种基于辅助数据的... 机械系统存在的外部环境干扰、变工况条件以及无法直接测量等因素,导致获取的数据常常不满足传统机器学习的两个前提:训练与测试数据分布相同以及目标诊断数据量充足,从而影响诊断模型的泛化能力。针对上述问题,提出一种基于辅助数据的增强型最小二乘支持向量机(LSSVM)迁移学习策略,用于数据量不足时的轴承故障诊断。其中利用递归定量分析(RQA)提取非线性特征并与传统时域特征相结合以提高诊断精度。诊断分类器通过改进传统LSSVM模型,在原目标函数和约束条件中分别增加辅助集的惩罚函数和约束条件,最终得到加入辅助集的函数估计,从而将该算法推广至迁移学习。此外,类内类间距离指标用于描述特征区分性,并提出4种辅助数据集的使用方法,从而构建迁移学习为框架的诊断模型。球形轴承的振动信号试验结果表明,相比传统机器学习,在目标振动数据较少条件下所提模型在轴承故障诊断时性能提升显著。 展开更多
关键词 轴承故障诊断 递归定量分析 迁移学习 最小二乘支持向量机
在线阅读 下载PDF
基于改进蚁群算法优化参数的LSSVM短期负荷预测 被引量:39
15
作者 龙文 梁昔明 +1 位作者 龙祖强 李朝辉 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期3408-3414,共7页
提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法。该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找... 提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法。该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找到模型的最优参数,得到基于MACO算法优化的LSSVM(MACO-LSSVM)预测模型。将优化后的LSSVM模型应用于短期电力负荷预测问题,选择湖南某地区日期为2009-08-01至2009-08-30各小时点的数据进行分析,对2009-08-31该日24 h的负荷进行预测,并与BP神经网络和SVM模型进行比较。研究结果表明:本文方法得到的均方根相对误差为1.71%,比用BP神经网络和SVM模型得到的均方根相对误差分别低1.61%和1.05%。 展开更多
关键词 最小二乘支持向量机 蚁群优化算法 参数优化 短期负荷预测
在线阅读 下载PDF
基于MI-LSSVM的水泥生料细度软测量建模 被引量:19
16
作者 赵彦涛 单泽宇 +2 位作者 常跃进 陈宇 郝晓辰 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第2期487-496,共10页
针对水泥生料细度软测量模型难以建立的问题,考虑到输入变量选择易受时延的影响,提出一种基于互信息和最小二乘支持向量机(MI-LSSVM)的软测量建模方法。该方法采用互信息表征变量间的相关性,进而解决水泥生料细度软测量建模中的时延问题... 针对水泥生料细度软测量模型难以建立的问题,考虑到输入变量选择易受时延的影响,提出一种基于互信息和最小二乘支持向量机(MI-LSSVM)的软测量建模方法。该方法采用互信息表征变量间的相关性,进而解决水泥生料细度软测量建模中的时延问题,并在此基础之上,提出双向选择算法获取输入变量,将得到的输入变量应用于最小二乘支持向量机中,建立水泥生料细度软测量模型,最后应用水泥厂的实际数据对基于互信息和最小二乘支持向量机的水泥生料细度软测量模型进行仿真。结果表明该方法预测精度高、泛化能力强。 展开更多
关键词 互信息 最小二乘支持向量机 变量选择 水泥生料细度 软测量建模
在线阅读 下载PDF
基于PSO-LSSVM模型的基坑变形时间序列预测 被引量:26
17
作者 曹净 丁文云 +2 位作者 赵党书 宋志刚 刘海明 《控制工程》 CSCD 北大核心 2015年第3期475-480,共6页
现场量测获得的基坑变形资料蕴含了系统内部力学演化信息。针对基坑变形影响因素的复杂性、监测数据的高度非线性以及人工神经网络方法的过学习问题,利用粒子群(PSO)算法优选最小二乘支持向量机(LSSVM)参数,并结合相空间重构理论进行数... 现场量测获得的基坑变形资料蕴含了系统内部力学演化信息。针对基坑变形影响因素的复杂性、监测数据的高度非线性以及人工神经网络方法的过学习问题,利用粒子群(PSO)算法优选最小二乘支持向量机(LSSVM)参数,并结合相空间重构理论进行数据预处理,提出了一种基于PSO-LSSVM模型的基坑变形时间序列预测方法。利用该方法建立基坑变形预测模型应用于动态设计和信息化施工,对保证基坑安全具有重要意义。将该方法用于昆明某基坑工程的深层水平位移预测,不断利用基坑前期工况的最新实测数据建模,对后期工况变形量进行滚动预测,获得了令人满意的效果。 展开更多
关键词 基坑变形 时间序列预测 最小二乘支持向量机 粒子群优化算法 相空间重构
在线阅读 下载PDF
基于ACO-LSSVM的网络流量预测 被引量:12
18
作者 田海梅 黄楠 《计算机工程与应用》 CSCD 2014年第1期91-95,共5页
为了提高了网络流量的预测精度,提出一种蚁群算法(ACO)优化最小二乘支持向量机(LSSVM)参数的网络流量预测算法(ACO-LSSVM)。将LSSVM算法参数作为蚂蚁的位置向量,采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,并在最优蚂... 为了提高了网络流量的预测精度,提出一种蚁群算法(ACO)优化最小二乘支持向量机(LSSVM)参数的网络流量预测算法(ACO-LSSVM)。将LSSVM算法参数作为蚂蚁的位置向量,采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,并在最优蚂蚁邻域内进行小步长局部搜索,找到算法的最优参数,建立了基于ACO-LSSVM的网络流量预测模型。仿真结果表明,相对其他网络流量预测算法,ACO-LSSVM算法提高了网络流量预测精度,更能准确地描述网络流量变化规律。 展开更多
关键词 网络流量 蚁群优化算法 最小二乘支持向量机 预测 Least squarE support vector machine(lssvm)
在线阅读 下载PDF
煤与瓦斯突出预测的QGA-LSSVM模型 被引量:17
19
作者 温廷新 孙红娟 +2 位作者 张波 邵良杉 孔祥博 《中国安全生产科学技术》 CAS CSCD 北大核心 2015年第5期5-12,共8页
为快速、有效地对煤与瓦斯突出类型作出预测,运用灰色关联和因子分析模型对所选主要的判别指标进行分析提取,利用量子遗传算法(QGA)对最小二乘支持向量机(LSSVM)的参数作寻优处理,最终建立QGA-LSSVM煤与瓦斯突出预测模型。选取从砚石台... 为快速、有效地对煤与瓦斯突出类型作出预测,运用灰色关联和因子分析模型对所选主要的判别指标进行分析提取,利用量子遗传算法(QGA)对最小二乘支持向量机(LSSVM)的参数作寻优处理,最终建立QGA-LSSVM煤与瓦斯突出预测模型。选取从砚石台矿区历史实测的数据,以96∶20的比例对该模型进行训练与测试,并将预测结果与其他预测模型的预测效果进行了比较。研究结果表明:对判别指标进行灰色关联分析可以有效去除对煤与瓦斯突出影响作用小的指标;用因子分析进行公共因子提取,可以有效减少数据信息冗余;利用QGA优化的LSSVM模型能使结果避免陷入局部最优解,用该模型可以有效预测煤与瓦斯突出类型,误判率为0。 展开更多
关键词 煤与瓦斯突出 突出预测 灰色关联 因子分析 量子遗传算法 最小二乘支持向量机中图
在线阅读 下载PDF
融合提升小波降噪和LSSVM的网络流量在线预测 被引量:12
20
作者 李明迅 孟相如 +2 位作者 袁荣坤 温祥西 陈新富 《计算机应用》 CSCD 北大核心 2012年第2期340-342,346,共4页
针对网络流量数据被噪声污染而无法进行准确建模与预测的问题,将提升小波降噪(LWD)技术和在线最小二乘支持向量机(LSSVM)相结合,提出了一种网络流量的集成式在线预测方法。该方法首先对采集的流量数据进行降噪,然后采用相空间重构理论... 针对网络流量数据被噪声污染而无法进行准确建模与预测的问题,将提升小波降噪(LWD)技术和在线最小二乘支持向量机(LSSVM)相结合,提出了一种网络流量的集成式在线预测方法。该方法首先对采集的流量数据进行降噪,然后采用相空间重构理论计算流量的时延、嵌入维数,据此确定训练样本并建立在线预测模型,对网络流量数据进行预测。实验结果表明,该方法能有效滤除流量噪声,实现在线预测,提高预测精度。 展开更多
关键词 网络流量预测 提升小波降噪 最小二乘支持向量机 在线算法
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部