期刊文献+
共找到739篇文章
< 1 2 37 >
每页显示 20 50 100
Improved adaptive pruning algorithm for least squares support vector regression 被引量:4
1
作者 Runpeng Gao Ye San 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期438-444,共7页
As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit... As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance. 展开更多
关键词 least squares support vector regression machine (LS- SVRM) PRUNING leave-one-out (LOO) error incremental learning decremental learning.
在线阅读 下载PDF
Improved scheme to accelerate sparse least squares support vector regression
2
作者 Yongping Zhao Jianguo Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期312-317,共6页
The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in p... The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem. 展开更多
关键词 least squares support vector regression machine pruning algorithm iterative methodology classification.
在线阅读 下载PDF
电力变压器内部故障的递进分层诊断方法 被引量:1
3
作者 咸日常 李云淏 +4 位作者 刘焕国 王昭璇 张海强 胡玉耀 王玮 《电网技术》 北大核心 2025年第4期1726-1734,I0079,I0080,共11页
电力变压器内部故障成因复杂、种类繁多,精确诊断难度大,现有诊断技术大多滞留于故障定性阶段。为实现多类型故障的精准定位,该文通过建立多状态量与故障特征之间的递进映射关系,提出一种改进灰狼算法与最小二乘支持向量机耦合的电力变... 电力变压器内部故障成因复杂、种类繁多,精确诊断难度大,现有诊断技术大多滞留于故障定性阶段。为实现多类型故障的精准定位,该文通过建立多状态量与故障特征之间的递进映射关系,提出一种改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障递进分层诊断方法。首先介绍改进灰狼算法与最小二乘支持向量机的原理,建立电力变压器故障递进分层、自动诊断及定位模型;其次基于300组电力变压器的状态量,利用核主成分分析法进行降维处理,选取线性无关的特征状态量,依据DL/T 1685—2017《油浸式变压器状态评价导则》进行离散化处理,借助算法模型递进分层、自动诊断:第一层诊断故障回路、第二层确定故障部位、第三层明确故障原因,得到各分类器的诊断准确率及惩罚系数和核函数参数的最优组合解,并与其他算法模型的故障诊断结果进行分析对比;最后以实际故障案例验证方法的有效性。结果表明:该文所提诊断模型比其他方法拥有更高准确率和更快的运算速度。 展开更多
关键词 电力变压器 改进灰狼算法 最小二乘支持向量机 多状态量 内部故障 递进分层诊断
在线阅读 下载PDF
多策略改进COA算法优化LSSVM的变压器故障诊断研究 被引量:2
4
作者 李斌 白翔旭 《电工电能新技术》 北大核心 2025年第4期112-119,共8页
为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混... 为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混沌映射、透镜反向学习、Levy飞行等策略对浣熊优化算法(COA)进行优化,提高全局寻优能力;然后,应用ICOA算法进行LSSVM参数寻优,构建ICOA-LSSVM故障诊断模型;最后,将特征提取后的数据导入ICOA-LSSVM中并与其他模型对比。实验结果表明所提方法准确率为96.19%,相比其他诊断模型具有更高的故障诊断精度。 展开更多
关键词 变压器故障诊断 浣熊优化算法 核主成分分析 最小二乘支持向量机
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测 被引量:1
5
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
基于改进U-Net和IWOA-LSSVM的番茄综合品质检测方法研究
6
作者 施利春 边可可 +1 位作者 王松伟 王治忠 《食品与机械》 北大核心 2025年第8期109-117,共9页
[目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像... [目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像信息;通过多尺度残差注意力U-Net模型对番茄图像进行分割,完成番茄果径参数测量;通过混沌映射和自适应收敛因子优化的鲸鱼优化算法对最小二乘支持向量机模型参数进行寻优,完成番茄硬度和番茄红素含量检测,并进行验证试验。[结果]试验方法可以实现番茄综合品质的准确、快速和无损检测。在番茄果径、硬度和番茄红素检测中均取得了较优的决定系数、均方根误差和平均检测时间,决定系数>0.960 0,均方根误差<0.012 5,平均检测时间<0.032 s。[结论]结合机器视觉、深度学习和智能算法可以实现番茄综合品质的准确、快速和无损检测。 展开更多
关键词 番茄 综合品质 无损检测 机器视觉 U-Net模型 鲸鱼优化算法 最小二乘支持向量机
在线阅读 下载PDF
新能源汽车驱动电机冷却系统劣化故障预测
7
作者 柳炽伟 黄韵迪 《汽车安全与节能学报》 北大核心 2025年第2期277-285,共9页
提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行... 提出一种主成分分析及粒子群优化支持向量机(PCA-GOA-LSSVM)的多分类器模型,用于尽早检测和预测新能源汽车驱动电机冷却系统的劣化,减少因冷却液温度过高导致的电机功率限制或停机状况的发生。其中主成分分析法(PCA)用于对故障特征进行降维重构处理,蝗虫算法(GOA)用来优化最小二乘支持向量机(LSSVM)的参数。通过实车故障试验采集样本数据,分别输入至LSSVM预测模型、PCA-PSO-SVM及PCA-GOA-LSSVM模型,进行对比测试。结果表明:基于PCA-GOA-LSSVM的多分类器预测模型准确率达91.41%、精确率达86.25%,高于对比的预测模型,可准确提醒及时维护车辆及有效判断故障类型;该模型能够用于新能源汽车驱动电机冷却系统性能劣化预测和故障诊断中。 展开更多
关键词 新能源汽车 驱动电机冷却系统 故障预测 最小二乘支持向量机(LSSVM) 蝗虫算法(GOA) 主成分分析(PCA)
在线阅读 下载PDF
基于PCA-DBO-SVR的林地土壤有机质高光谱反演模型 被引量:2
8
作者 邓昀 王君 +1 位作者 陈守学 石媛媛 《光谱学与光谱分析》 北大核心 2025年第2期569-583,共15页
森林土壤有机碳(SOC)是土壤中的有机物质(SOM)的碳部分,它对维持森林生态系统的平衡和稳定非常重要。传统实验通过化学方法分析土壤中有机物质的含量进而计算土壤中的有机碳,此类化学方法费时费力且产生化学废水污染环境。高光谱技术可... 森林土壤有机碳(SOC)是土壤中的有机物质(SOM)的碳部分,它对维持森林生态系统的平衡和稳定非常重要。传统实验通过化学方法分析土壤中有机物质的含量进而计算土壤中的有机碳,此类化学方法费时费力且产生化学废水污染环境。高光谱技术可以非接触、高效率地检测出土壤的养分信息。针对现有机器学习土壤有机质预测模型的精度和计算效率方面的不足,以广西国有黄冕林场和国有雅长林场为土壤样品采集点,基于全光谱数据利用主成分分析算法(PCA)筛选特征波段的最佳波长数量,并利用比一阶微分处理数据更加精细且能平衡光谱噪声和光谱分辨率之间的关系的分数阶微分为预处理方法之一对光谱数据进行变换处理,最后采用相对于传统的中心化算法拥有较高鲁棒性和容错能力的蜣螂算法(DBO)对支持向量回归机(SVR)的高斯核函数的参数组合进行优化。研究结果表明,PCA-DBO-SVR模型可以有效提高土壤有机质预测的决定系数R^(2)并降低预测均方根误差(RMSE)。PCA-DBO-SVR在对比预测模型中表现出最佳的泛化性能和准确度,其验证集R^(2)为0.942,RMSE为2.989 g·kg^(-1),展现了较好的准确性。 展开更多
关键词 近红外光谱 分数阶微分 蜣螂优化算法 土壤养分预测 支持向量回归机
在线阅读 下载PDF
基于IBA-SVR的滚动轴承性能退化趋势预测 被引量:1
9
作者 黄亚州 邵萌 +3 位作者 吴昊 安冬 张浩龙 崔志强 《科学技术与工程》 北大核心 2025年第6期2428-2434,共7页
建立准确的滚动轴承性能退化预测模型对于轴承故障分类、寿命预测等后续处理有着至关重要的作用。为了解决轴承性能退化模型预测不准确的问题,提出了一种改进的蝙蝠算法(improvement bat algorithm,IBA)来提高退化模型预测的准确度。首... 建立准确的滚动轴承性能退化预测模型对于轴承故障分类、寿命预测等后续处理有着至关重要的作用。为了解决轴承性能退化模型预测不准确的问题,提出了一种改进的蝙蝠算法(improvement bat algorithm,IBA)来提高退化模型预测的准确度。首先将Cat混沌映射应用到种群初始位置,增强种群的遍历性,提高初始解的质量;其次在迭代过程中加入类反正切控制因子,提高算法寻优精度;最后改进位置更新策略,防止陷入局部最优。通过与蝙蝠算法(bat algorithm,BA)优化的支持向量回归机(support vector regression,SVR)、粒子群优化算法优化的SVR和灰狼优化算法优化的SVR所得的结果做对比,结果表明:IBA所优化预测模型的均值绝对误差分别下降了70.60%、67.19%、55.56%,均方根误差分别下降了76.64%、76.12%、30.29%,进一步证明了改进后的预测模型的准确性。 展开更多
关键词 蝙蝠算法 滚动轴承 退化趋势预测 支持向量回归机
在线阅读 下载PDF
基于KPCA-IPOA-LSSVM的变压器电热故障诊断 被引量:2
10
作者 陈尧 周连杰 《南方电网技术》 北大核心 2025年第1期20-29,共10页
为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vec... 为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的变压器故障诊断方法。首先用KPCA对多维变压器故障数据进行特征提取,降低计算复杂度。其次引入Logistic混沌映射、自适应权重策略和透镜成像反向学习策略对鹈鹕优化算法(pelican optimization algorithm,POA)进行改进。最后建立了KPCA-IPOA-LSSVM故障诊断模型,诊断精度为94.24%,与PCA-IPOA-SVM、KPCA-IPOA-SVM、KPCA-WOA-LSSVM和KPCA-POA-LSSVM故障诊断模型进行对比,准确率分别提升了18.31%、11.53%、11.87%、7.46%。结果表明,所提出的变压器故障诊断模型有效提高了故障诊断的准确率,证明了该诊断模型具有一定的理论研究和实际工程应用意义。 展开更多
关键词 变压器 鹈鹕优化算法 最小二乘支持向量机 核主成分分析 故障诊断
在线阅读 下载PDF
基于IPSO-LSSVR算法的变电站工程造价预测方法 被引量:2
11
作者 王林峰 刘云 +2 位作者 亓彦珣 周波 李洁 《沈阳工业大学学报》 北大核心 2025年第2期168-175,共8页
【目的】电网建设项目中变电站工程造价的预测一直是影响项目成本管理的重要问题。然而,当前常用的变电站造价预测方法存在预测精度不足、计算效率低等问题,制约了预测模型在实际工程中的应用。为提高预测的准确性和计算效率,提出了一... 【目的】电网建设项目中变电站工程造价的预测一直是影响项目成本管理的重要问题。然而,当前常用的变电站造价预测方法存在预测精度不足、计算效率低等问题,制约了预测模型在实际工程中的应用。为提高预测的准确性和计算效率,提出了一种基于改进的粒子群优化(IPSO)算法和最小二乘支持向量回归(LSSVR)算法的变电站工程造价预测方法。【方法】考虑到常规变电站与智能变电站在设备、技术和运维上的差异,通过分析这两类变电站的特点,对相关数据进行了有针对性的预处理,以去除噪声数据,填补缺失值,并将有效信息转换为特征向量,作为LSSVR模型的输入。为避免传统粒子群(PSO)算法易陷入局部最优解的问题,引入了一种混合调节策略,对PSO算法的惯性权重和学习因子进行优化,使得优化过程更加稳定并具备较强的全局搜索能力。通过该策略IPSO算法可以在全局搜索和局部搜索之间实现更好的平衡。利用IPSO算法优化LSSVR模型参数,并建立变电站工程造价预测模型。【结果】通过与其他预测模型进行比较分析得出结论,所提出的IPSO-LSSVR算法在预测精度上具有明显优势。具体来说,基于该模型的预测误差显著低于其他方法,可以将偏差控制在5%以内。改进后的粒子群优化算法能够有效避免陷入局部最优,确保了LSSVR模型在各种情况下都能提供较为准确的预测结果。【结论】基于IPSO优化LSSVR算法的变电站工程造价预测方法,克服了传统预测方法在预测精度和计算效率上的不足。在实际应用中,该方法能够为电网建设项目的成本管理提供更加准确的预测依据,从而有助于项目预算的合理制定和资源的有效配置。 展开更多
关键词 变电站 工程造价 造价预测 粒子群算法 最小二乘支持向量回归 预测精度 运算效率 混合调节策略
在线阅读 下载PDF
基于LS-SVR岩石爆破块度预测 被引量:15
12
作者 史秀志 王洋 +1 位作者 黄丹 史采星 《爆破》 CSCD 北大核心 2016年第3期36-40,共5页
为了准确预测小样本条件下露天矿山岩石的爆破块度,并得到小样本条件下预测露天矿山爆破块度的有效方法,借助最小二乘支持向量机工具(LS-SVMlab)构建基于最小二乘支持向量机回归(LS-SVR)预测模型并合理优化模型参数。分别使用15组露天... 为了准确预测小样本条件下露天矿山岩石的爆破块度,并得到小样本条件下预测露天矿山爆破块度的有效方法,借助最小二乘支持向量机工具(LS-SVMlab)构建基于最小二乘支持向量机回归(LS-SVR)预测模型并合理优化模型参数。分别使用15组露天矿山爆破数据和35组爆破数据作为小样本容量和正常样本容量,对模型的预测精度进行检验。结果表明:两种样本容量下LS-SVR预测模型的预测结果精度都比同样本容量下人工神经网络(ANN)回归预测的结果精度更高,说明所提出的LS-SVR模型适用于预测露天矿山爆破块度,并且在小样本条件下更具优势。 展开更多
关键词 支持向量机 最小二乘支持向量机回归 LS-SVMlab 岩石块度 小样本预测
在线阅读 下载PDF
基于EWOA-LSSVR的机器人磨抛接触力预测模型
13
作者 张诗涵 魏锦辉 +3 位作者 王阳 朱光 李论 刘殿海 《金刚石与磨料磨具工程》 北大核心 2025年第4期551-560,共10页
为确定航空发动机叶片机器人磨抛过程中材料去除深度与工艺参数之间的关系,获得加工所需的工艺参数,实现叶片表面材料的定点定量去除,建立叶片机器人磨抛加工系统,将各工艺参数考虑在内进行多组正交实验;利用实验数据建立基于最小二乘... 为确定航空发动机叶片机器人磨抛过程中材料去除深度与工艺参数之间的关系,获得加工所需的工艺参数,实现叶片表面材料的定点定量去除,建立叶片机器人磨抛加工系统,将各工艺参数考虑在内进行多组正交实验;利用实验数据建立基于最小二乘支持向量回归机(least squares support vector regression,LSSVR)模型,利用增强型鲸鱼优化算法(enhanced whale optimization algorithm,EWOA)提高算法精度、寻优能力和避免陷入局部最优并对LSSVR的超参数进行优化;对比标准鲸鱼优化算法(whale optimization algorithm,WOA)和粒子群优化(particle swarm optimization,PSO)算法预测模型的结果,并利用模型预测的工艺参数进行实验验证。结果表明:EWOA-LSSVR预测模型的决定系数R为96.031%,平均绝对误差RMAE为0.012128 mm,相较于WOA-LSSVR和PSO-LSSVR模型具有更好的拟合度;且验证实验结果证明EWOA-LSSVR预测模型具有较好的预测准确性,并可为叶片表面材料的定点定量去除提供可靠依据。 展开更多
关键词 机器人砂带磨抛 工艺参数 机器学习 最小二乘支持向量回归机 增强型鲸鱼优化算法
在线阅读 下载PDF
基于特征量重要度LS-SVR的WSN定位方法 被引量:5
14
作者 刘桂雄 周松斌 +1 位作者 张晓平 洪晓斌 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第10期102-107,共6页
针对无线传感器网络(WSN)节点定位方法中采用粗测距技术时,节点间较大的测距误差导致定位准确度不足的问题,提出一种基于特征量重要度最小二乘支持向量回归(LS-SVR)的定位方法.该方法把未知节点到锚节点的距离作为特征量,依据... 针对无线传感器网络(WSN)节点定位方法中采用粗测距技术时,节点间较大的测距误差导致定位准确度不足的问题,提出一种基于特征量重要度最小二乘支持向量回归(LS-SVR)的定位方法.该方法把未知节点到锚节点的距离作为特征量,依据特征量的重要度进行特征提取,通过对探测区域网格化采样得到训练样本集,使用LS-SVR学习得到定位模型;在定位阶段,将未知节点的特征向量输入定位模型,利用LS—SVR良好的泛化能力实现对未知节点的准确定位.对均匀分布和C形区域随机分布的100个节点的定位实验表明,文中提出的定位方法能有效地降低测距误差对定位准确度的影响,减小平均定位误差;与采用相同测距技术的DV—Hop方法相比,均匀分布情况下该方法的平均定位误差减小7.5%~14.0%,C形区域随机分布情况下显著减小36.5%~55.2%. 展开更多
关键词 特征提取 最小二乘支持向量回归机 无线传感器网络 定位
在线阅读 下载PDF
基于新息的多参量混沌时间序列LS-SVR加权预测 被引量:5
15
作者 郭阳明 翟正军 姜红梅 《西北工业大学学报》 EI CAS CSCD 北大核心 2009年第1期83-87,共5页
复杂系统常常依赖于通过观测所获得的多参量混沌时间序列进行预测分析。论文借鉴单参量混沌时间序列预测的思路,考虑全部相关参量混沌时间序列中的信息,以实现多参量混沌时间序列的相空间重构。同时,基于新息优先原理和支持向量机理论,... 复杂系统常常依赖于通过观测所获得的多参量混沌时间序列进行预测分析。论文借鉴单参量混沌时间序列预测的思路,考虑全部相关参量混沌时间序列中的信息,以实现多参量混沌时间序列的相空间重构。同时,基于新息优先原理和支持向量机理论,结合混沌时间序列发展变化的规律,提出分别利用相空间重构后长期多样本和近期少样本构建2个自适应最小二乘支持向量回归预测模型进行加权预测的观点,并给出了以预测均方根误差最小为目标函数的模型参数混沌优化方法。论文以某飞机转子部件磨损故障的3个相关参量的仿真混沌时间序列为例进行了预测实验,结果表明文中方法有较好的预测精度,是一种有效的预测方法。 展开更多
关键词 支持向量机 多参量 混沌时间序列 最小二乘支持向量回归 加权预测
在线阅读 下载PDF
基于IWOA-LSSVM的矿用差压式流量计误差补偿方法
16
作者 王伟峰 李煜 +3 位作者 田丰 李卓洋 白玉 李寒冰 《西安科技大学学报》 北大核心 2025年第4期726-734,共9页
针对矿用差压式流量计易受井下瓦斯抽采管道中温度、湿度、压力等因素的干扰,导致测量误差较大的问题,提出了一种基于改进的鲸鱼算法(IWOA)优化最小二乘支持向量机(LSSVM)的误差补偿方法。采用鲸鱼算法(WOA)优化LSSVM模型的核函数参数... 针对矿用差压式流量计易受井下瓦斯抽采管道中温度、湿度、压力等因素的干扰,导致测量误差较大的问题,提出了一种基于改进的鲸鱼算法(IWOA)优化最小二乘支持向量机(LSSVM)的误差补偿方法。采用鲸鱼算法(WOA)优化LSSVM模型的核函数参数和惩罚因子,引入Tent混沌映射、随机性学习方法以及自适应权重,构建IWOA-LSSVM误差补偿模型;搭建试验模拟测试平台,模拟抽采管道环境,应用Matlab对监测数据进行仿真,对比BP神经网络、PSO-LSSVM算法、GWO-LSSVM算法的误差补偿结果。结果表明:相较于原始测量值,BP神经网络使差压式流量计平均百分比误差从7.40%下降到1.13%,PSO-LSSVM算法使平均百分比误差下降到1.05%,GWO-LSSVM算法使平均百分比误差下降到0.47%,而IWOA-LSSVM算法可以使百分比误差下降到0.23%。IWOA-LSSVM算法能有效消除环境因素对流量计输出结果的影响,提高了矿用差压式流量计的可靠性与检测精度。 展开更多
关键词 差压式流量计 误差补偿 鲸鱼算法 最小二乘支持向量机 瓦斯抽采
在线阅读 下载PDF
基于BWO-WLS-SVM的对二甲苯氧化过程智能混合建模
17
作者 陶莉莉 黄淼 +1 位作者 胡志华 张淑平 《化工进展》 北大核心 2025年第10期5619-5626,共8页
对二甲苯(p-xylene,PX)氧化反应建模时,实验室反应装置及反应条件与工业生产过程有很大差异,这些差异导致了工业PX氧化反应器的生产状况很难通过实验室获得的动力学反应模型进行描述。在氧化反应过程中,主要通过反应速率常数来描述各反... 对二甲苯(p-xylene,PX)氧化反应建模时,实验室反应装置及反应条件与工业生产过程有很大差异,这些差异导致了工业PX氧化反应器的生产状况很难通过实验室获得的动力学反应模型进行描述。在氧化反应过程中,主要通过反应速率常数来描述各反应操作条件对反应过程的影响,反应速率常数和各种反应条件之间经常存在非确定和非线性的函数关系,机器学习方法如神经网络或支持向量机等是解决该类问题的一种有效手段。此外,因为实验室提供的数据样本很少,针对小样本情况下的机器学习问题,本文在实验室机理和数据基础上,提出了基于白鲸优化的加权最小二乘支持向量机算法(BWO-WLS-SVM),并对实验室动力学模型参数进行了智能优化修正,建立了一个能够较为精确描述工业反应器的PX氧化反应智能混合模型,为该过程的优化及控制等提供了基础。 展开更多
关键词 对二甲苯氧化 加权最小二乘支持向量机 白鲸优化算法 智能混合建模
在线阅读 下载PDF
基于多策略改进合作搜索算法的径流混合预报模型
18
作者 杜成锐 李旻 +3 位作者 孙大雁 梁志峰 王金龙 周波 《人民长江》 北大核心 2025年第7期56-65,共10页
针对传统径流预测方法存在的预测精度低及泛化能力差等问题,提出了集成逐次变分模态分解、多策略改进合作搜索算法及误差时空综合修正的径流混合预报模型。首先,利用逐次变分模态分解将径流时间序列分解为若干相对独立、互不影响的子序... 针对传统径流预测方法存在的预测精度低及泛化能力差等问题,提出了集成逐次变分模态分解、多策略改进合作搜索算法及误差时空综合修正的径流混合预报模型。首先,利用逐次变分模态分解将径流时间序列分解为若干相对独立、互不影响的子序列;其次,以最小二乘支持向量机模型为预报单元,分别通过正弦初始化、动态交流及游走变异等策略对合作搜索算法进行综合改进,提升了参数全局搜索能力和收敛稳定性;最后,对各模型预测结果进行叠加集成,运用误差时空修正策略进一步降低预测误差,保障结果精度和可靠性。在福建省池潭水库的工程应用表明:相较于LSTM、ELM、SVR、LSSVR等传统模拟,混合预报模型在径流预测结果中具有更高的RMSE、MAE、CC、NSE指标值,预见期1~4 d的NSE指标分别为0.986,0.982,0.976,0.967,展现出更高的精度和稳定性。各模块有效性检验结果表明,所提模型能精确捕捉非线性径流数据关系,降低预测偏差,可为变化条件下高精度径流预测提供参考。 展开更多
关键词 径流预报 逐次变分模态分解法 合作搜索算法 最小二乘支持向量回归 误差时空综合修正 池潭水库
在线阅读 下载PDF
基于LS-SVR的混合定位算法 被引量:1
19
作者 夏斌 梁春燕 +1 位作者 袁文浩 谢楠 《计算机工程与设计》 北大核心 2018年第11期3318-3321,3339,共5页
为解决最小二乘支持向量回归(least-square support vector regression,LS-SVR)定位精度不高的问题,提出基于LS-SVR的混合定位算法,充分考虑未知节点之间的距离信息在定位过程中的有效修正作用。通过LS-SVR算法提供初始值,提高多元Taylo... 为解决最小二乘支持向量回归(least-square support vector regression,LS-SVR)定位精度不高的问题,提出基于LS-SVR的混合定位算法,充分考虑未知节点之间的距离信息在定位过程中的有效修正作用。通过LS-SVR算法提供初始值,提高多元Taylor级数展开法的收敛速度;通过多元Taylor级数展开法,充分利用未知节点之间的距离信息,减小测距误差造成的定位误差。仿真结果表明,与传统LS-SVR定位算法相比,混合定位算法的精度更高,减少了正则化参数和核参数的选取对定位精度的影响。 展开更多
关键词 多元泰勒级数展开 定位模型 最小二乘支持向量回归 定位精度 混合算法
在线阅读 下载PDF
基于介电特性的生鲜牛奶含水率检测方法
20
作者 王欢 张轶腾 +3 位作者 王斌 周童 梁清 张宏 《新疆农业科学》 北大核心 2025年第4期975-981,共7页
【目的】探索牛奶介电特性和含水率之间的关系,为有效预测生鲜牛奶含水率、实现含水率快速检测提供参考。【方法】采用矢量网络分析仪和同轴探头测量2~20 GHz频率范围内牛奶样品的介电常数(ε′)和介质损耗因数(ε″)。采用偏最小二乘回... 【目的】探索牛奶介电特性和含水率之间的关系,为有效预测生鲜牛奶含水率、实现含水率快速检测提供参考。【方法】采用矢量网络分析仪和同轴探头测量2~20 GHz频率范围内牛奶样品的介电常数(ε′)和介质损耗因数(ε″)。采用偏最小二乘回归(PLSR)、支持向量回归(SVR)和基于粒子群优化的最小二乘支持向量回归(PSO-LSSVR)3种建模方法,依次以ε′和ε″为变量建立6种数学模型对牛奶含水率进行预测并选优,精准预测牛奶含水率。【结果】随着频率的增加,ε′呈逐渐减小的趋势,ε″呈逐渐增大的趋势。6种模型中基于PSO-LSSVR方法下以ε″为变量建立的模型具有最好的含水率预测性能,其R^(2)和RMSE分别为0.9963和0.0013。【结论】在2~20 GHz,随着频率的增加,ε′呈逐渐减小的趋势,而ε″则逐渐增加,介电特性可有效地预测牛奶的含水率。 展开更多
关键词 牛奶 含水率 介电特性 粒子群算法 支持向量回归 偏最小二乘回归
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部