The three-dimensional(3D)synthetic space offers a platform for exploring the valley Hall insulator,which is usually constructed in graphene lattice.Here,based on the valley transports in the square lattice,we construc...The three-dimensional(3D)synthetic space offers a platform for exploring the valley Hall insulator,which is usually constructed in graphene lattice.Here,based on the valley transports in the square lattice,we construct a synthetic space by treating the rotation angle as the third dimension and observe the emergent Weyl points in this synthetic space.Since the construction of synthetic Weyl points results in the formation of edge states between the phononic crystal(PC)and the hard boundary,and the factors of rotation angle and the distance from the PC to the hard boundary affect the frequency of these edge states,we can construct topological rainbow concentrator based on the above principles.We conduct a comprehensive numerical and experimental study to explore the characteristics of topological rainbow concentrators.This work may play a driving role in the development of topological rainbow devices.展开更多
Regressive formulae to calculate the quantity of plant leaf area for 13 species of ornamental plants were set up based on investigation data of 30 species on 3 major public squares (Dongfeng square, Shengli square and...Regressive formulae to calculate the quantity of plant leaf area for 13 species of ornamental plants were set up based on investigation data of 30 species on 3 major public squares (Dongfeng square, Shengli square and Guandu square) in Kun-ming City, China, which were applied to calculate quantities of plant leaf area of these 13 species. The quantities of plant leaf area for the other 17 ornamental plant species on these squares were directly measured, and the total quantity of plant leaf area of each studied square was obtained individually. The results showed that the quantity of plant leaf area on Shengli square with ornamental plants structure composed of arbor tree species, shrub tree species and turf grass was highest among the three squares. It is believed that the design model of multi-storied vertical structure and proper tending of plant community could not only increase the quantity of plant leaf area, but also play an important role in generating ecological and landscaping benefits. Some corresponding suggestions were put forward on the basis of comprehensive analyses on the plant leaf area quantity of the three representative squares in Kunming urban area.展开更多
A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response tim...A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response time is curtailed. Besides, an OPLS-SVR based analytical redundancy technique is presented to cope with the sensor failure and drift problems to guarantee that the provided signals for the aeroengine controller are correct and acceptable. Experiments on the sensor failure and drift show the effectiveness and the validity of the proposed analytical redundancy.展开更多
A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using ...A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration展开更多
In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of ...In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰.展开更多
A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki...A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.展开更多
Determine the location of a target has gained considerable interest over the past few years. The Received Signal Strength(RSS) measurements and Differential RSS(DRSS) measurements can be converted to distance or dista...Determine the location of a target has gained considerable interest over the past few years. The Received Signal Strength(RSS) measurements and Differential RSS(DRSS) measurements can be converted to distance or distance ratio estimates for constructing a set of linear equations. Based on these linear equations, a constrained weighted least Squares(CWLS) algorithm for target localization is derived. In addition, an iterative technique based on Newton's method is utilized to give a solution. The covariance and bias of the CWLS algorithm is derived using perturbation analysis. Simulation shows that the proposed estimator achieves better performance than existing algorithms with reasonable complexity.展开更多
In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain...In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity.展开更多
In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performa...In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performance, the high-dimensional space, which provides more information on the system than the scalar time series, is first reconstructed utilizing Takens's embedding theorem. Then the MDRLS-SVM instead of traditional RLS-SVM is used in the high- dimensional space, and the prediction performance can be improved from the point of view of reconstructed embedding phase space. In addition, the MDRLS-SVM algorithm is analysed in the context of noise, and we also find that the MDRLS-SVM has lower sensitivity to noise than the RLS-SVM.展开更多
In this article, we are interested in least squares estimator for a class of pathdependent McKean-Vlasov stochastic differential equations (SDEs). More precisely, we investigate the consistency and asymptotic distribu...In this article, we are interested in least squares estimator for a class of pathdependent McKean-Vlasov stochastic differential equations (SDEs). More precisely, we investigate the consistency and asymptotic distribution of the least squares estimator for the unknown parameters involved by establishing an appropriate contrast function. Comparing to the existing results in the literature, the innovations of this article lie in three aspects:(i) We adopt a tamed Euler-Maruyama algorithm to establish the contrast function under the monotone condition, under which the Euler-Maruyama scheme no longer works;(ii) We take the advantage of linear interpolation with respect to the discrete-time observations to approximate the functional solution;(iii) Our model is more applicable and practice as we are dealing with SDEs with irregular coefficients (for example, Holder continuous) and pathdistribution dependent.展开更多
This study used near-infrared(NIR)spectroscopy to predict mechanical properties of wood.NIR spectra were collected in wavelengths 900–1700 nm,and spectra averaged by radial and tangential surface spectra were used to...This study used near-infrared(NIR)spectroscopy to predict mechanical properties of wood.NIR spectra were collected in wavelengths 900–1700 nm,and spectra averaged by radial and tangential surface spectra were used to establish a partial least square(PLS)model based on correlation local embedding(CLE).Mongolian oak(Quercus mongolica Fisch.ex Ledeb.)was used to test the eff ectiveness of the model.The cross-validation method was used to verify the robustness of the CLE–PLS model.Ninety samples were tested as the calibration set and forty-fi ve as the validation set.The results show that the prediction coeffi cient of determination(R2 p)is 0.80 for MOR,and 0.78 for MOE.The ratio of performance to deviation is 2.23 for MOR and 2.15 for MOE.展开更多
The collective motion of rounded squares with different comer-roundness ζ is studied by molecular dynamlcs (MD) simulation in this work. Three types of translational collective motion pattern are observed, includin...The collective motion of rounded squares with different comer-roundness ζ is studied by molecular dynamlcs (MD) simulation in this work. Three types of translational collective motion pattern are observed, including', gliding, hopping and a mixture of gliding and hopping. Quantitatively, the dynamics of each observed ordered phase is characterized by both mean square displacement and van Hove functions for both translation and rotation. The effect of corner-roundness on the dynamics is further studied by comparing the dynamics of the rhombic crystal phases folmed by different comer-.rounded particles at a same surface fraction. The results show that as ζ increases from 0.286 to 0.667, the translational collective motion of particles changes from a gliding-dominant pattern to a hopping-dominant patte;n, whereas the rotational motion pattern is hopping-like and does not change in its type, but the rotational hopping becomes much more frequent as increases (i.e., as particles become more rounded). A simple geometrical model is proposed to explain the trend of gliding motion observed in MD simulations.展开更多
A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict t...A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict the future state of the power-shift steering transmission (PSST). A prediction model of PSST was gotten with multiple outputs LS-SVR. The model performance was greatly influenced by the penalty parameter γ and kernel parameter σ2 which were optimized using cross validation method. The training and prediction of the model were done with spectrometric oil analysis data. The predictive and actual values were compared and a fault in the second PSST was found. The research proved that this method had good accuracy in PSST fault prediction, and any possible problem in PSST could be found through a comparative analysis.展开更多
Least squares support vector machine (LS-SVM) is applied in gas path fault diagnosis for aero engines. Firstly, the deviation data of engine cruise are analyzed. Then, model selection is conducted using pattern sear...Least squares support vector machine (LS-SVM) is applied in gas path fault diagnosis for aero engines. Firstly, the deviation data of engine cruise are analyzed. Then, model selection is conducted using pattern search method. Finally, by decoding aircraft communication addressing and reporting system (ACARS) report, a real-time cruise data set is acquired, and the diagnosis model is adopted to process data. In contrast to the radial basis function (RBF) neutral network, LS-SVM is more suitable for real-time diagnosis of gas turbine engine.展开更多
We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discuss...We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discussed in the singular case (a0, θ0) = (0, 0). If a0 = 0, then the mean-reverting α-stable motion becomes Ornstein-Uhlenbeck process and is studied in [7] in the ergodic case θ0 〉 0. For the Ornstein-Uhlenbeck process, asymptotics of the least squares estimators for the singular case (θ0 = 0) and for ergodic case (θ0 〉 0) are completely different.展开更多
The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morph...The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morphological characteristics show significant variations for different patients.A fast patient-specific arrhythmia diagnosis classifier scheme is proposed,in which a wavelet adaptive threshold denoising is combined with quantum genetic algorithm(QAG)based on least squares twin support vector machine(LSTSVM).The wavelet adaptive threshold denoising is employed for noise reduction,and then morphological features combined with the timing interval features are extracted to evaluate the classifier.For each patient,an individual and fast classifier will be trained by common and patient-specific training data.Following the recommendations of the Association for the Advancements of Medical Instrumentation(AAMI),experimental results over the MIT-BIH arrhythmia benchmark database demonstrated that our proposed method achieved the average detection accuracy of 98.22%,99.65%and 99.41%for the abnormal,ventricular ectopic beats(VEBs)and supra-VEBs(SVEBs),respectively.Besides the detection accuracy,sensitivity and specificity,our proposed method consumes the less CPU running time compared with the other representative state of the art methods.It can be ported to Android based embedded system,henceforth suitable for a wearable device.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074184,12274219,and 11934009)the Key Research and Development Project of Jiangsu Province,China(Grant No.BE2022814)。
文摘The three-dimensional(3D)synthetic space offers a platform for exploring the valley Hall insulator,which is usually constructed in graphene lattice.Here,based on the valley transports in the square lattice,we construct a synthetic space by treating the rotation angle as the third dimension and observe the emergent Weyl points in this synthetic space.Since the construction of synthetic Weyl points results in the formation of edge states between the phononic crystal(PC)and the hard boundary,and the factors of rotation angle and the distance from the PC to the hard boundary affect the frequency of these edge states,we can construct topological rainbow concentrator based on the above principles.We conduct a comprehensive numerical and experimental study to explore the characteristics of topological rainbow concentrators.This work may play a driving role in the development of topological rainbow devices.
基金This research was sponsored by Educational Department of Yunnan Province (No. 03Z583B).
文摘Regressive formulae to calculate the quantity of plant leaf area for 13 species of ornamental plants were set up based on investigation data of 30 species on 3 major public squares (Dongfeng square, Shengli square and Guandu square) in Kun-ming City, China, which were applied to calculate quantities of plant leaf area of these 13 species. The quantities of plant leaf area for the other 17 ornamental plant species on these squares were directly measured, and the total quantity of plant leaf area of each studied square was obtained individually. The results showed that the quantity of plant leaf area on Shengli square with ornamental plants structure composed of arbor tree species, shrub tree species and turf grass was highest among the three squares. It is believed that the design model of multi-storied vertical structure and proper tending of plant community could not only increase the quantity of plant leaf area, but also play an important role in generating ecological and landscaping benefits. Some corresponding suggestions were put forward on the basis of comprehensive analyses on the plant leaf area quantity of the three representative squares in Kunming urban area.
基金Supported by the National Natural Science Foundation of China(50576033)the Aeronautical ScienceFoundation of China(04C52019)~~
文摘A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response time is curtailed. Besides, an OPLS-SVR based analytical redundancy technique is presented to cope with the sensor failure and drift problems to guarantee that the provided signals for the aeroengine controller are correct and acceptable. Experiments on the sensor failure and drift show the effectiveness and the validity of the proposed analytical redundancy.
基金Supported by the National Natural Science Foundation of China(51006052)the Nanjing University of Science and Technology Outstanding Scholar Supporting Program~~
文摘A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration
基金Supported by the National Natural Science Foundation of China(50576033)the Aeronautical Science Foundation of China(04C52019)~~
文摘In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰.
文摘A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.
文摘Determine the location of a target has gained considerable interest over the past few years. The Received Signal Strength(RSS) measurements and Differential RSS(DRSS) measurements can be converted to distance or distance ratio estimates for constructing a set of linear equations. Based on these linear equations, a constrained weighted least Squares(CWLS) algorithm for target localization is derived. In addition, an iterative technique based on Newton's method is utilized to give a solution. The covariance and bias of the CWLS algorithm is derived using perturbation analysis. Simulation shows that the proposed estimator achieves better performance than existing algorithms with reasonable complexity.
基金supported by the National Natural Science Foundation of China(11271020)the Distinguished Young Scholars Foundation of Anhui Province(1608085J06)supported by the National Natural Science Foundation of China(11171062)
文摘In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity.
基金Project supported by the National Natural Science Foundation of China (Grant No 90207012).
文摘In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performance, the high-dimensional space, which provides more information on the system than the scalar time series, is first reconstructed utilizing Takens's embedding theorem. Then the MDRLS-SVM instead of traditional RLS-SVM is used in the high- dimensional space, and the prediction performance can be improved from the point of view of reconstructed embedding phase space. In addition, the MDRLS-SVM algorithm is analysed in the context of noise, and we also find that the MDRLS-SVM has lower sensitivity to noise than the RLS-SVM.
文摘In this article, we are interested in least squares estimator for a class of pathdependent McKean-Vlasov stochastic differential equations (SDEs). More precisely, we investigate the consistency and asymptotic distribution of the least squares estimator for the unknown parameters involved by establishing an appropriate contrast function. Comparing to the existing results in the literature, the innovations of this article lie in three aspects:(i) We adopt a tamed Euler-Maruyama algorithm to establish the contrast function under the monotone condition, under which the Euler-Maruyama scheme no longer works;(ii) We take the advantage of linear interpolation with respect to the discrete-time observations to approximate the functional solution;(iii) Our model is more applicable and practice as we are dealing with SDEs with irregular coefficients (for example, Holder continuous) and pathdistribution dependent.
基金financially supported by the China State Forestry Administration“948”projects(2015-4-52)Fundamental Research Funds for the Central Universities(2572017DB05)Heilongjiang Natural Science Foundation(C2017005)。
文摘This study used near-infrared(NIR)spectroscopy to predict mechanical properties of wood.NIR spectra were collected in wavelengths 900–1700 nm,and spectra averaged by radial and tangential surface spectra were used to establish a partial least square(PLS)model based on correlation local embedding(CLE).Mongolian oak(Quercus mongolica Fisch.ex Ledeb.)was used to test the eff ectiveness of the model.The cross-validation method was used to verify the robustness of the CLE–PLS model.Ninety samples were tested as the calibration set and forty-fi ve as the validation set.The results show that the prediction coeffi cient of determination(R2 p)is 0.80 for MOR,and 0.78 for MOE.The ratio of performance to deviation is 2.23 for MOR and 2.15 for MOE.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21573159 and 21621004)
文摘The collective motion of rounded squares with different comer-roundness ζ is studied by molecular dynamlcs (MD) simulation in this work. Three types of translational collective motion pattern are observed, including', gliding, hopping and a mixture of gliding and hopping. Quantitatively, the dynamics of each observed ordered phase is characterized by both mean square displacement and van Hove functions for both translation and rotation. The effect of corner-roundness on the dynamics is further studied by comparing the dynamics of the rhombic crystal phases folmed by different comer-.rounded particles at a same surface fraction. The results show that as ζ increases from 0.286 to 0.667, the translational collective motion of particles changes from a gliding-dominant pattern to a hopping-dominant patte;n, whereas the rotational motion pattern is hopping-like and does not change in its type, but the rotational hopping becomes much more frequent as increases (i.e., as particles become more rounded). A simple geometrical model is proposed to explain the trend of gliding motion observed in MD simulations.
基金Supported by the Ministerial Level Advanced Research Foundation(3031030)the"111"Project(B08043)
文摘A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict the future state of the power-shift steering transmission (PSST). A prediction model of PSST was gotten with multiple outputs LS-SVR. The model performance was greatly influenced by the penalty parameter γ and kernel parameter σ2 which were optimized using cross validation method. The training and prediction of the model were done with spectrometric oil analysis data. The predictive and actual values were compared and a fault in the second PSST was found. The research proved that this method had good accuracy in PSST fault prediction, and any possible problem in PSST could be found through a comparative analysis.
基金The National High Technology Research and Development Program of China (No.2006AA12A108)
文摘Least squares support vector machine (LS-SVM) is applied in gas path fault diagnosis for aero engines. Firstly, the deviation data of engine cruise are analyzed. Then, model selection is conducted using pattern search method. Finally, by decoding aircraft communication addressing and reporting system (ACARS) report, a real-time cruise data set is acquired, and the diagnosis model is adopted to process data. In contrast to the radial basis function (RBF) neutral network, LS-SVM is more suitable for real-time diagnosis of gas turbine engine.
基金Hu is supported by the National Science Foundation under Grant No.DMS0504783Long is supported by FAU Start-up funding at the C. E. Schmidt College of Science
文摘We study the problem of parameter estimation for mean-reverting α-stable motion, dXt = (a0 - θ0Xt)dt + dZt, observed at discrete time instants. A least squares estimator is obtained and its asymptotics is discussed in the singular case (a0, θ0) = (0, 0). If a0 = 0, then the mean-reverting α-stable motion becomes Ornstein-Uhlenbeck process and is studied in [7] in the ergodic case θ0 〉 0. For the Ornstein-Uhlenbeck process, asymptotics of the least squares estimators for the singular case (θ0 = 0) and for ergodic case (θ0 〉 0) are completely different.
基金Supported by the National Natural Science Foundation of China(61571063)Key Scientific Research Projects of Colleges and Universities in Henan Province(20A510014)Key Scientific and Technological Projects in Henan Province。
文摘The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morphological characteristics show significant variations for different patients.A fast patient-specific arrhythmia diagnosis classifier scheme is proposed,in which a wavelet adaptive threshold denoising is combined with quantum genetic algorithm(QAG)based on least squares twin support vector machine(LSTSVM).The wavelet adaptive threshold denoising is employed for noise reduction,and then morphological features combined with the timing interval features are extracted to evaluate the classifier.For each patient,an individual and fast classifier will be trained by common and patient-specific training data.Following the recommendations of the Association for the Advancements of Medical Instrumentation(AAMI),experimental results over the MIT-BIH arrhythmia benchmark database demonstrated that our proposed method achieved the average detection accuracy of 98.22%,99.65%and 99.41%for the abnormal,ventricular ectopic beats(VEBs)and supra-VEBs(SVEBs),respectively.Besides the detection accuracy,sensitivity and specificity,our proposed method consumes the less CPU running time compared with the other representative state of the art methods.It can be ported to Android based embedded system,henceforth suitable for a wearable device.