期刊文献+
共找到2,833篇文章
< 1 2 142 >
每页显示 20 50 100
多策略改进COA算法优化LSSVM的变压器故障诊断研究 被引量:2
1
作者 李斌 白翔旭 《电工电能新技术》 北大核心 2025年第4期112-119,共8页
为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混... 为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混沌映射、透镜反向学习、Levy飞行等策略对浣熊优化算法(COA)进行优化,提高全局寻优能力;然后,应用ICOA算法进行LSSVM参数寻优,构建ICOA-LSSVM故障诊断模型;最后,将特征提取后的数据导入ICOA-LSSVM中并与其他模型对比。实验结果表明所提方法准确率为96.19%,相比其他诊断模型具有更高的故障诊断精度。 展开更多
关键词 变压器故障诊断 浣熊优化算法 核主成分分析 最小二乘支持向量机
在线阅读 下载PDF
基于SVS算法优选整形正则化参数的WLSSI谱反演方法研究 被引量:1
2
作者 乐友喜 付俊楠 葛传友 《石油地球物理勘探》 北大核心 2025年第2期440-451,共12页
谱反演方法是研究非平稳地震信号的有效手段,在地震信号处理、分析和综合解释领域发挥了重要的作用。文中提出一种基于分群涡流搜索(SVS)算法优选整形正则化参数的加权最小二乘谱反演(WLSSISVSOSR)方法。该方法从一般正问题的理论公式出... 谱反演方法是研究非平稳地震信号的有效手段,在地震信号处理、分析和综合解释领域发挥了重要的作用。文中提出一种基于分群涡流搜索(SVS)算法优选整形正则化参数的加权最小二乘谱反演(WLSSISVSOSR)方法。该方法从一般正问题的理论公式出发,反演得到地震信号的傅里叶级数系数,然后将整形正则化思想引入加权最小二乘谱反演中,基于谱反演方法构造了一种整形正则化算子;采用分群涡流搜索算法对整形正则化参数进行优选,较好地克服了反演过程中的收敛速度慢和稳定性差的问题,获得了地震信号较为稳定的时―频域分布特征。模型测试及实际资料处理结果表明:该方法具有很好的时频域分辨率及能量聚焦性,能够识别含油气储层的优势频率范围;利用优势频率的瞬时振幅特征,可以基本确定含油气储层的横向分布范围,从而实现对含油气储层的精细刻画和描述。 展开更多
关键词 谱反演 整形正则化 分群涡流搜索算法 加权最小二乘 时频谱
在线阅读 下载PDF
基于RLS-RBPF算法的车辆悬架参数辨识方法研究
3
作者 王姝 董传昊 +3 位作者 张大伟 赵轩 周辰雨 邵帅 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期19-27,共9页
在汽车的运行过程中,悬架系统的状态不可避免地会发生改变。为了准确评估悬架参数的长期变化,尤其是实现早期故障预警,提出了一种基于车辆实际行驶状态的悬架参数辨识方法,首先在车辆的关键部位安装振动传感器,采集振动加速度信号。然后... 在汽车的运行过程中,悬架系统的状态不可避免地会发生改变。为了准确评估悬架参数的长期变化,尤其是实现早期故障预警,提出了一种基于车辆实际行驶状态的悬架参数辨识方法,首先在车辆的关键部位安装振动传感器,采集振动加速度信号。然后,通过递推最小二乘算法对悬架的弹簧刚度和减震器阻尼系数进行初步识别。在此基础上,进一步采用Rao-Blackwellized粒子滤波算法对初步辨识结果进行二次优化。最后,结合实测的车辆硬点坐标和通过辨识得到的悬架参数,基于多体动力学原理构建车辆动力学模型,与实际设计参数进行对比,并进行整车动力学仿真以验证辨识参数的准确性。实验结果表明,该方法在识别悬架弹簧刚度和减震器阻尼系数方面具有很高的精度,与真实值的最大偏差仅为2.50%和1.82%。同时,车辆动力学模型的仿真输出与实测载荷谱的均方根误差控制在5%以内。该方法显著提高了悬架系统参数辨识的精确度,是一种高精度的汽车悬架参数在线辨识算法。 展开更多
关键词 递推最小二乘算法 RBPF算法 实车载荷谱 参数辨识
在线阅读 下载PDF
基于改进U-Net和IWOA-LSSVM的番茄综合品质检测方法研究
4
作者 施利春 边可可 +1 位作者 王松伟 王治忠 《食品与机械》 北大核心 2025年第8期109-117,共9页
[目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像... [目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像信息;通过多尺度残差注意力U-Net模型对番茄图像进行分割,完成番茄果径参数测量;通过混沌映射和自适应收敛因子优化的鲸鱼优化算法对最小二乘支持向量机模型参数进行寻优,完成番茄硬度和番茄红素含量检测,并进行验证试验。[结果]试验方法可以实现番茄综合品质的准确、快速和无损检测。在番茄果径、硬度和番茄红素检测中均取得了较优的决定系数、均方根误差和平均检测时间,决定系数>0.960 0,均方根误差<0.012 5,平均检测时间<0.032 s。[结论]结合机器视觉、深度学习和智能算法可以实现番茄综合品质的准确、快速和无损检测。 展开更多
关键词 番茄 综合品质 无损检测 机器视觉 U-Net模型 鲸鱼优化算法 最小二乘支持向量机
在线阅读 下载PDF
基于IFFRLS-IMMUKF的商用车磷酸铁锂电池SOC估算
5
作者 吴华伟 何成泽 +3 位作者 洪强 周小高 李明金 顾亚娟 《储能科学与技术》 北大核心 2025年第10期3996-4008,共13页
荷电状态(SOC)作为电动汽车剩余容量的表征参数,它的准确预估可以保障电动汽车的安全可靠性。针对复杂环境下电池SOC难以精确估算的问题,本工作基于动力电池特性构建了等效电路模型,并对电池模型状态方程进行了离散化的推演,在获得离散... 荷电状态(SOC)作为电动汽车剩余容量的表征参数,它的准确预估可以保障电动汽车的安全可靠性。针对复杂环境下电池SOC难以精确估算的问题,本工作基于动力电池特性构建了等效电路模型,并对电池模型状态方程进行了离散化的推演,在获得离散化状态方程的基础上,将金豺优化算法与遗忘因子递推最小二乘法(FFRLS)相结合提出了改进遗忘递推最小二乘法对电池模型进行了参数辨识。同时,联合交互式多模型无迹卡尔曼滤波(IMMUKF)算法对电池SOC进行估算,并在对常温和高温条件下的动态应力(DST)和联邦城市驾驶工况(FUDS)进行试验验证。结果表明,基于IFFRLS-IMMUKF的锂电池SOC估算方法,其平均绝对值误差在0.8%之内,对磷酸铁锂电池有较高的SOC估算精度。 展开更多
关键词 金豺优化算法 遗忘因子递推最小二乘法 交互式多模型无迹卡尔曼滤波 荷电状态
在线阅读 下载PDF
基于改进SVD和LS-Prony的电机转子断条故障诊断 被引量:2
6
作者 贾朱植 康云娟 +2 位作者 祝洪宇 张博 宋向金 《电子测量技术》 北大核心 2025年第3期100-111,共12页
采用电机定子电流信号特征分析诊断转子断条故障时,基频两侧的故障特征频率和幅值是判断故障发生与否和严重程度的重要参数。FFT算法的诊断能力严重依赖于所分析的数据长度,最小二乘Prony分析算法虽然具有短时数据分析能力,但是该方法... 采用电机定子电流信号特征分析诊断转子断条故障时,基频两侧的故障特征频率和幅值是判断故障发生与否和严重程度的重要参数。FFT算法的诊断能力严重依赖于所分析的数据长度,最小二乘Prony分析算法虽然具有短时数据分析能力,但是该方法对噪声异常敏感,当电机低频低负载运行时同样存在故障特征提取能力不足和诊断失效的问题。为解决上述问题,提出改进奇异值分解和LS-PA算法相结合的转子断条故障诊断方法。首先采用按列截断方式重构奇异值分解矩阵,根据奇异值差商确定有效阶次,进而对定子电流信号进行预处理以适度抑制噪声,然后运用LS-PA算法对预处理后的信号做故障特征识别和诊断。有限元仿真和实验分析结果表明,所提出的方法能有效抑制电流信号噪声,具有短时数据高分辨率的诊断性能,在工频和变频供电时均能实现电机轻载到满载全工况稳定运行条件下的转子断条故障诊断,诊断性能高于经典的FFT方法。 展开更多
关键词 故障诊断 奇异值分解 最小二乘Prony算法 电机定子电流信号特征分析
在线阅读 下载PDF
基于KPCA-IPOA-LSSVM的变压器电热故障诊断 被引量:2
7
作者 陈尧 周连杰 《南方电网技术》 北大核心 2025年第1期20-29,共10页
为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vec... 为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的变压器故障诊断方法。首先用KPCA对多维变压器故障数据进行特征提取,降低计算复杂度。其次引入Logistic混沌映射、自适应权重策略和透镜成像反向学习策略对鹈鹕优化算法(pelican optimization algorithm,POA)进行改进。最后建立了KPCA-IPOA-LSSVM故障诊断模型,诊断精度为94.24%,与PCA-IPOA-SVM、KPCA-IPOA-SVM、KPCA-WOA-LSSVM和KPCA-POA-LSSVM故障诊断模型进行对比,准确率分别提升了18.31%、11.53%、11.87%、7.46%。结果表明,所提出的变压器故障诊断模型有效提高了故障诊断的准确率,证明了该诊断模型具有一定的理论研究和实际工程应用意义。 展开更多
关键词 变压器 鹈鹕优化算法 最小二乘支持向量机 核主成分分析 故障诊断
在线阅读 下载PDF
基于IPSO-LSSVR算法的变电站工程造价预测方法 被引量:2
8
作者 王林峰 刘云 +2 位作者 亓彦珣 周波 李洁 《沈阳工业大学学报》 北大核心 2025年第2期168-175,共8页
【目的】电网建设项目中变电站工程造价的预测一直是影响项目成本管理的重要问题。然而,当前常用的变电站造价预测方法存在预测精度不足、计算效率低等问题,制约了预测模型在实际工程中的应用。为提高预测的准确性和计算效率,提出了一... 【目的】电网建设项目中变电站工程造价的预测一直是影响项目成本管理的重要问题。然而,当前常用的变电站造价预测方法存在预测精度不足、计算效率低等问题,制约了预测模型在实际工程中的应用。为提高预测的准确性和计算效率,提出了一种基于改进的粒子群优化(IPSO)算法和最小二乘支持向量回归(LSSVR)算法的变电站工程造价预测方法。【方法】考虑到常规变电站与智能变电站在设备、技术和运维上的差异,通过分析这两类变电站的特点,对相关数据进行了有针对性的预处理,以去除噪声数据,填补缺失值,并将有效信息转换为特征向量,作为LSSVR模型的输入。为避免传统粒子群(PSO)算法易陷入局部最优解的问题,引入了一种混合调节策略,对PSO算法的惯性权重和学习因子进行优化,使得优化过程更加稳定并具备较强的全局搜索能力。通过该策略IPSO算法可以在全局搜索和局部搜索之间实现更好的平衡。利用IPSO算法优化LSSVR模型参数,并建立变电站工程造价预测模型。【结果】通过与其他预测模型进行比较分析得出结论,所提出的IPSO-LSSVR算法在预测精度上具有明显优势。具体来说,基于该模型的预测误差显著低于其他方法,可以将偏差控制在5%以内。改进后的粒子群优化算法能够有效避免陷入局部最优,确保了LSSVR模型在各种情况下都能提供较为准确的预测结果。【结论】基于IPSO优化LSSVR算法的变电站工程造价预测方法,克服了传统预测方法在预测精度和计算效率上的不足。在实际应用中,该方法能够为电网建设项目的成本管理提供更加准确的预测依据,从而有助于项目预算的合理制定和资源的有效配置。 展开更多
关键词 变电站 工程造价 造价预测 粒子群算法 最小二乘支持向量回归 预测精度 运算效率 混合调节策略
在线阅读 下载PDF
基于FFRLS的锂离子电池全工况等效电路模型 被引量:1
9
作者 孙中旺 刘冲 +3 位作者 刘春桥 江新天 靖知川 吕龙 《电池》 北大核心 2025年第1期78-84,共7页
在锂离子电池等多时间尺度系统中,最小二乘(LS)算法的应用面临模型参数辨识精度低和工况适应性差等挑战。以一阶等效电路模型为研究对象,采用基于遗忘因子的递推最小二乘(FFRLS)算法,用于精确估计电池内阻相关参数。针对恒流工况下在线... 在锂离子电池等多时间尺度系统中,最小二乘(LS)算法的应用面临模型参数辨识精度低和工况适应性差等挑战。以一阶等效电路模型为研究对象,采用基于遗忘因子的递推最小二乘(FFRLS)算法,用于精确估计电池内阻相关参数。针对恒流工况下在线辨识精度不足、离线辨识精度较高的特点,提出全工况自适应输出等效电路模型,以提升的模型精度。基于实际工况的仿真实验表明:全工况等效电路模型较单一恒流工况精度更高。全工况模型结合了离线和在线辨识算法,具有更小的误差,为0.68%。 展开更多
关键词 锂离子电池 等效电池模型 最小二乘(ls)算法 全工况模型
在线阅读 下载PDF
Improved adaptive pruning algorithm for least squares support vector regression 被引量:4
10
作者 Runpeng Gao Ye San 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期438-444,共7页
As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit... As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance. 展开更多
关键词 least squares support vector regression machine ls- SVRM) PRUNING leave-one-out (LOO) error incremental learning decremental learning.
在线阅读 下载PDF
基于IWOA-LSSVM的矿用差压式流量计误差补偿方法
11
作者 王伟峰 李煜 +3 位作者 田丰 李卓洋 白玉 李寒冰 《西安科技大学学报》 北大核心 2025年第4期726-734,共9页
针对矿用差压式流量计易受井下瓦斯抽采管道中温度、湿度、压力等因素的干扰,导致测量误差较大的问题,提出了一种基于改进的鲸鱼算法(IWOA)优化最小二乘支持向量机(LSSVM)的误差补偿方法。采用鲸鱼算法(WOA)优化LSSVM模型的核函数参数... 针对矿用差压式流量计易受井下瓦斯抽采管道中温度、湿度、压力等因素的干扰,导致测量误差较大的问题,提出了一种基于改进的鲸鱼算法(IWOA)优化最小二乘支持向量机(LSSVM)的误差补偿方法。采用鲸鱼算法(WOA)优化LSSVM模型的核函数参数和惩罚因子,引入Tent混沌映射、随机性学习方法以及自适应权重,构建IWOA-LSSVM误差补偿模型;搭建试验模拟测试平台,模拟抽采管道环境,应用Matlab对监测数据进行仿真,对比BP神经网络、PSO-LSSVM算法、GWO-LSSVM算法的误差补偿结果。结果表明:相较于原始测量值,BP神经网络使差压式流量计平均百分比误差从7.40%下降到1.13%,PSO-LSSVM算法使平均百分比误差下降到1.05%,GWO-LSSVM算法使平均百分比误差下降到0.47%,而IWOA-LSSVM算法可以使百分比误差下降到0.23%。IWOA-LSSVM算法能有效消除环境因素对流量计输出结果的影响,提高了矿用差压式流量计的可靠性与检测精度。 展开更多
关键词 差压式流量计 误差补偿 鲸鱼算法 最小二乘支持向量机 瓦斯抽采
在线阅读 下载PDF
基于BWO-WLS-SVM的对二甲苯氧化过程智能混合建模
12
作者 陶莉莉 黄淼 +1 位作者 胡志华 张淑平 《化工进展》 北大核心 2025年第10期5619-5626,共8页
对二甲苯(p-xylene,PX)氧化反应建模时,实验室反应装置及反应条件与工业生产过程有很大差异,这些差异导致了工业PX氧化反应器的生产状况很难通过实验室获得的动力学反应模型进行描述。在氧化反应过程中,主要通过反应速率常数来描述各反... 对二甲苯(p-xylene,PX)氧化反应建模时,实验室反应装置及反应条件与工业生产过程有很大差异,这些差异导致了工业PX氧化反应器的生产状况很难通过实验室获得的动力学反应模型进行描述。在氧化反应过程中,主要通过反应速率常数来描述各反应操作条件对反应过程的影响,反应速率常数和各种反应条件之间经常存在非确定和非线性的函数关系,机器学习方法如神经网络或支持向量机等是解决该类问题的一种有效手段。此外,因为实验室提供的数据样本很少,针对小样本情况下的机器学习问题,本文在实验室机理和数据基础上,提出了基于白鲸优化的加权最小二乘支持向量机算法(BWO-WLS-SVM),并对实验室动力学模型参数进行了智能优化修正,建立了一个能够较为精确描述工业反应器的PX氧化反应智能混合模型,为该过程的优化及控制等提供了基础。 展开更多
关键词 对二甲苯氧化 加权最小二乘支持向量机 白鲸优化算法 智能混合建模
在线阅读 下载PDF
基于EWOA-LSSVR的机器人磨抛接触力预测模型
13
作者 张诗涵 魏锦辉 +3 位作者 王阳 朱光 李论 刘殿海 《金刚石与磨料磨具工程》 北大核心 2025年第4期551-560,共10页
为确定航空发动机叶片机器人磨抛过程中材料去除深度与工艺参数之间的关系,获得加工所需的工艺参数,实现叶片表面材料的定点定量去除,建立叶片机器人磨抛加工系统,将各工艺参数考虑在内进行多组正交实验;利用实验数据建立基于最小二乘... 为确定航空发动机叶片机器人磨抛过程中材料去除深度与工艺参数之间的关系,获得加工所需的工艺参数,实现叶片表面材料的定点定量去除,建立叶片机器人磨抛加工系统,将各工艺参数考虑在内进行多组正交实验;利用实验数据建立基于最小二乘支持向量回归机(least squares support vector regression,LSSVR)模型,利用增强型鲸鱼优化算法(enhanced whale optimization algorithm,EWOA)提高算法精度、寻优能力和避免陷入局部最优并对LSSVR的超参数进行优化;对比标准鲸鱼优化算法(whale optimization algorithm,WOA)和粒子群优化(particle swarm optimization,PSO)算法预测模型的结果,并利用模型预测的工艺参数进行实验验证。结果表明:EWOA-LSSVR预测模型的决定系数R为96.031%,平均绝对误差RMAE为0.012128 mm,相较于WOA-LSSVR和PSO-LSSVR模型具有更好的拟合度;且验证实验结果证明EWOA-LSSVR预测模型具有较好的预测准确性,并可为叶片表面材料的定点定量去除提供可靠依据。 展开更多
关键词 机器人砂带磨抛 工艺参数 机器学习 最小二乘支持向量回归机 增强型鲸鱼优化算法
在线阅读 下载PDF
改进变分模态分解和LSSVM的用户电力负荷预测
14
作者 解世璇 刘立群 吴青峰 《现代电子技术》 北大核心 2025年第20期127-134,共8页
为提升电力系统短期负荷预测的准确率,保证日常电力系统的正常运行,提出一种基于WOA-VMD-SSA-LSSVM的短期电力负荷预测模型。首先,使用鲸鱼优化算法(WOA)对变分模态分解(VMD)的核心参数(k值和惩罚系数α)进行自动寻优,得到最佳效果的分... 为提升电力系统短期负荷预测的准确率,保证日常电力系统的正常运行,提出一种基于WOA-VMD-SSA-LSSVM的短期电力负荷预测模型。首先,使用鲸鱼优化算法(WOA)对变分模态分解(VMD)的核心参数(k值和惩罚系数α)进行自动寻优,得到最佳效果的分解子序列,减少不同趋势信息对预测精度的影响,并利用优化后的VMD对数据进行分解;然后,使用麻雀搜索算法(SSA)改进最小二乘支持向量机(LSSVM)的模型学习参数,对惩罚系数和核函数进行参数寻优,避免了单一预测变量精度不高的问题,进而建立预测模型,获得更为精确的预测结果;最后,将分解后的各组数据分别输入模型中,并将每个子序列的预测结果相加得到最终预测结果。实验结果表明,与PSO、GWO和SABO算法的建模结果相比,所提模型具有更高的预测精度且耗时较短,在一定程度上可为负荷管理、电力优化调度提供科学决策依据。 展开更多
关键词 预测模型分析 鲸鱼优化算法 麻雀搜索算法 变分模态分解 最小二乘支持向量机 数据预处理 时间序列预测
在线阅读 下载PDF
基于STD-RLS自适应算法的微震波工频干扰消除方法研究
15
作者 刘宝霖 张明伟 +1 位作者 袁国涛 田壮才 《大地测量与地球动力学》 北大核心 2025年第9期954-963,共10页
提出一种结合时间序列季节趋势离散(seasonal trend dispersion,STD)分解和递推最小二乘(recursive least squares,RLS)法的自适应去除工频干扰方法。该方法利用STD分解提取含工频干扰微震波的季节项,作为RLS的参考信号,并动态更新算法... 提出一种结合时间序列季节趋势离散(seasonal trend dispersion,STD)分解和递推最小二乘(recursive least squares,RLS)法的自适应去除工频干扰方法。该方法利用STD分解提取含工频干扰微震波的季节项,作为RLS的参考信号,并动态更新算法系数,使计算信号接近工频干扰信号。设计仿真实验,将1组无工频干扰的微震波与3种不同类型工频干扰叠加,分别使用有限冲击响应(finite impulse response,FIR)滤波、小波阈值(wavelet threshold,WT)滤波和本文方法进行处理。结果表明,本文方法能有效去除工频干扰,同时完整保留微震波的关键时频特征。此外,将本文方法应用于桃园煤矿微震监测数据处理,验证了其工程应用的可行性与可靠性。 展开更多
关键词 微震波 工频干扰 季节趋势离散分解 递推最小二乘法 自适应算法
在线阅读 下载PDF
利用CPO-PLSR建模优化的高光谱成像技术测定砀山酥梨可溶性固形物含量
16
作者 褚家辉 蒙庆华 +5 位作者 吴哲锋 陈颖杰 梁莲强 韦家乐 黄玉清 李钰 《果树学报》 北大核心 2025年第9期2179-2191,共13页
【目的】探讨高光谱成像技术在砀山酥梨可溶性固形物含量(soluble solids content,SSC)快速测定中的应用。【方法】通过高光谱成像系统和全自动折光仪获取砀山酥梨表面反射光谱与SSC数据,并采用中心化(Centered)和移动窗口平滑(Moving A... 【目的】探讨高光谱成像技术在砀山酥梨可溶性固形物含量(soluble solids content,SSC)快速测定中的应用。【方法】通过高光谱成像系统和全自动折光仪获取砀山酥梨表面反射光谱与SSC数据,并采用中心化(Centered)和移动窗口平滑(Moving Average,MA)进行数据预处理。采用连续投影算法(Sequentially Projected Algorithm,SPA)、竞争自适应重加权采样算法(Competitive Adaptive Reweighted Sampling,CARS)和改进无信息变量消除算法(Improved Modified Uninformative Variable Elimination,imUVE)提取特征波长,结合冠豪猪优化算法(Crested Porcupine Optimizer,CPO)与偏最小二乘回归(Partial Least Squares Regression,PLSR)建立CPO-PLSR回归模型。【结果】CPO-PLSR模型相较于传统的PLSR模型展现出了更优的性能,在采用SPA提取特征波长后,模型的预测性能达到最佳状态。预测集决定系数R_(P)^(2)、均方根误差(root mean square error of prediction,RMSEP)、残差预测偏差(residual prediction deviation,RPD)分别为0.69101、0.30764和1.81840。【结论】该方法为砀山酥梨SSC的快速测定提供了有效的技术方案。 展开更多
关键词 砀山酥梨 高光谱成像 可溶性固形物含量 冠豪猪优化算法 偏最小二乘回归算法
在线阅读 下载PDF
一种用于气候室相对湿度预测的MSPOA-LSSVM模型研究
17
作者 王一诺 郑焕祺 +1 位作者 杨胜坤 周玉成 《重庆理工大学学报(自然科学)》 北大核心 2025年第2期97-105,共9页
针对通风条件下,气候室相对湿度控制精度对甲醛检测准确性的影响,提出一种相对湿度预测模型。模型选取控温水箱、控制露点水箱和气候室相对湿度等7个数据采集点的数据作为输入和输出。基于多策略改进鹈鹕优化算法和最小二乘支持向量机构... 针对通风条件下,气候室相对湿度控制精度对甲醛检测准确性的影响,提出一种相对湿度预测模型。模型选取控温水箱、控制露点水箱和气候室相对湿度等7个数据采集点的数据作为输入和输出。基于多策略改进鹈鹕优化算法和最小二乘支持向量机构建MSPOA-LSSVM相对湿度预测模型。针对鹈鹕优化算法寻优能力不足的问题,使用随机对立学习初始化种群,引入融合鲸鱼优化的正余弦策略和动态权重因子策略,提高算法性能。将MSPOA-LSSVM模型与4种机器学习模型进行对比实验,结果表明,MSPOA-LSSVM模型决定系数、均方根误差分别为0.964和0.07389,均低于其他模型,可为解决相对湿度控制精度不足问题提供参考。 展开更多
关键词 气候室 相对湿度预测 鹈鹕优化算法 最小二乘支持向量机
在线阅读 下载PDF
近红外光谱测定黄水酸度的iPLS-iNSGA-III联合特征筛选方法
18
作者 张贵宇 向星睿 +3 位作者 张磊 王怡博 严俊 张云龙 《食品科学》 北大核心 2025年第17期283-291,共9页
针对传统化学方法测定黄水酸度存在费时费力的困境,利用近红外光谱技术和偏最小二乘回归(partial least squares regression,PLSR)算法实现发酵过程黄水酸度的快速无损检测。采用Savitzky-Golay卷积平滑对黄水原始光谱进行预处理削弱噪... 针对传统化学方法测定黄水酸度存在费时费力的困境,利用近红外光谱技术和偏最小二乘回归(partial least squares regression,PLSR)算法实现发酵过程黄水酸度的快速无损检测。采用Savitzky-Golay卷积平滑对黄水原始光谱进行预处理削弱噪声影响后,为简化模型和提高预测性能,采用波段和波点筛选方法联合筛选黄水光谱特征波数。先通过区间偏最小二乘(interval partial least squares,iPLS)、联合区间偏最小二乘、反向区间偏最小二乘3种波段筛选方法对黄水酸度特征区间进行初步定位,然后引入多目标优化思想,使用基于混沌初始化和自适应变异算子改进的非支配排序遗传算法III(improved non-dominated sorting genetic algorithm III,iNSGA-III)进行二次波点筛选。结果表明,基于iPLS-iNSGA-III筛选的70个特征波数的建立的PLSR模型对黄水酸度预测效果最佳,相较于原始全光谱建模,决定系数R2 p从0.7576提升到0.9309,预测均方根误差从0.8250 mmol/100 g降低到0.4394 mmol/100 g。该研究为白酒发酵副产物黄水酸度的快速、无损检测提供理论参考。 展开更多
关键词 黄水 酸度 近红外光谱 特征筛选 偏最小二乘回归 非支配排序遗传算法
在线阅读 下载PDF
采用改进遗传算法优化LS-SVM逆系统的外转子无铁心无轴承永磁同步发电机解耦控制 被引量:10
19
作者 朱熀秋 沈良瑜 《中国电机工程学报》 EI CSCD 北大核心 2024年第5期2037-2046,I0032,共11页
为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(leas... 为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(least square support vector machine,LS-SVM)逆系统的解耦控制策略。首先,基于ORC-BPMSG的结构及工作原理,推导其数学模型,并分析其可逆性。其次,建立LS-SVM回归方程,并采用IGA优化LS-SVM的性能参数,从而训练得到逆系统。然后,将逆系统与原系统串接,形成伪线性系统,实现了ORC-BPMSG的线性化和解耦。最后,将提出的控制方法与传统LS-SVM逆系统控制方法进行对比仿真和实验。仿真和实验结果表明:所提出的控制策略可以较好地实现ORC-BPMSG输出电压和悬浮力、以及悬浮力之间的解耦控制。 展开更多
关键词 外转子无铁心无轴承永磁同步发电机 最小二乘支持向量机 逆系统 改进遗传算法 解耦控制
在线阅读 下载PDF
基于DBN和BES-LSSVM的矿用压风机异常状态识别方法 被引量:3
20
作者 李敬兆 王克定 +2 位作者 王国锋 郑鑫 石晴 《流体机械》 CSCD 北大核心 2024年第3期89-97,共9页
针对矿用压风机这类分布式系统的异常类别复杂、识别精度低等问题,提出了一种基于深度置信网络(DBN)和最小二乘支持向量机(LSSVM)的异常状态识别方法。首先,分析压风机组成系统及其运行机理,确定常见的异常状态类型;其次,采用DBN无监督... 针对矿用压风机这类分布式系统的异常类别复杂、识别精度低等问题,提出了一种基于深度置信网络(DBN)和最小二乘支持向量机(LSSVM)的异常状态识别方法。首先,分析压风机组成系统及其运行机理,确定常见的异常状态类型;其次,采用DBN无监督学习方式充分挖掘监测数据中异常特征并快速提取;然后,利用秃鹰搜索算法(BES)优化LSSVM的超参数,构建最优的BES-LSSVM分类模型;最后,将DBN提取的异常特征作为BES-LSSVM模型的输入,对矿用压风机异常状态进行识别。试验验证与对比分析结果表明,相较于GA,PSO,GWO算法,BES算法的求解精度和收敛速度均有所提高,同时DBN-BES-LSSVM模型在测试集上平均识别精度达到94.65%,较PCA-LSSVM模型、DBN模型和DBN-LSSVM模型的识别精度分别提高了10.53%,5.84%和3.76%,验证了DBN-BES-LSSVM模型在矿用压风机异常特征提取以及特征识别方面的优越性。 展开更多
关键词 矿用压风机 深度置信网络 秃鹰搜索算法 最小二乘支持向量机 异常识别
在线阅读 下载PDF
上一页 1 2 142 下一页 到第
使用帮助 返回顶部