Studies to date have failed to consider gage disc cutters’variable cutting depth and the constraints of cutter-head welds,and have ignored the coupling mechanism between the profile of the full-face rock tunnel-borin...Studies to date have failed to consider gage disc cutters’variable cutting depth and the constraints of cutter-head welds,and have ignored the coupling mechanism between the profile of the full-face rock tunnel-boring machine(TBM)cutter-head and the assembled radius layout of the disc cutters.To solve these problems,an adaptive design method for studying cutter layout was proposed.Taking the bearing stress of the outermost gage disc cutter as an index,the profile of the cutter-head was determined.Using a genetic algorithm and based on the principles of equal life and equal wear,the assembled radii of the cutters were optimally designed.Boundary conditions of non-interference between the cutters,manholes,muck buckets and welding lines were given when a star layout pattern was used on cutters.The cutter-head comprehensive evaluation model was established by adopting relative optimization improvement degree of evaluation indices to achieve dimensional consistency.Exemplifying the MB264-311-8030 mm tape TBM cutter-head,the calculations show that compared with the original layout scheme,among the 51 disc cutters,the largest gap of the cutters’assembled radiuses is only 25.8 mm,which is 0.64%of the cutter-head’s radius and is negligible.The cutter-head’s unbalanced radial force decreases by 62.41%,the overturning moment decreases by 33.22%,and the cutter group’s centroid shift increases by only 18.48%.Each index is better than or approximately equal to the original cutter-head layout scheme,and the equivalent stress and deformation are both smaller;these results fully verify the feasibility and effectiveness of the method.展开更多
Electric vehicle is a kind of new energy vehicle which uses batteries as energy supply unit.A huge gap in charging infrastructures will be created by the expansion of electric vehicles.The effectiveness and rationalit...Electric vehicle is a kind of new energy vehicle which uses batteries as energy supply unit.A huge gap in charging infrastructures will be created by the expansion of electric vehicles.The effectiveness and rationality of charging facilities will directly affect the convenience and economy of the users,as well as the safe operation of the power grid.Three types of charging facilities:charging pile,charging station and battery swap station are introduced in this paper.According to the different methods of charging infrastructure planning,the research status of the method of determining charging demand points is expounded.And the spatial distribution of charging demand points extracted by the current site selection method has a certain deviation.Then the models and algorithms of charging infrastructure optimized layout are reviewed.Currently,many researches focus on three categories optimization objectives:benefit of power company side,investment cost of charging facility and user side cost,and the genetic algorithm and particle swarm optimization are the main solving algorithms.Finally,the relative methods and development trend of the charging infrastructures optimized layout are summarized,and some suggestions on the optimized layout of electric vehicle charging infrastructures are given forward.展开更多
To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainabili...To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainability was analyzed, and the layout problem for maintainability was presented. It was formulated as an optimization problem, where maintainability, layout space and distance requirement were formulated as objective functions. A multi-objective particle swarm optimization algorithm, in which the constrained-domination relationship and the update strategy of the global best were simply modified, was then used to obtain Pareto optimal solutions for the maintainability layout design problem. Finally, application in oxygen generation system of a spacecraft was studied in detail to illustrate the effectiveness and usefulness of the proposed method. The results show that the concurrent maintainability design can be carried out during the layout design process by solving the layout optimization problem for maintainability.展开更多
A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the...A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the C.G. offset, the cross moments of inertia and the space debris impact risk), we develop a threedimensional layout optimization model. Unlike most of the previous works just focusing on mass characteristics of the system, a space debris impact risk index is developed. Secondly, we develop an efficient optimization framework for the integration of computer-aided design (CAD) software as well as the optimization algorithm to obtain the Pareto front of the layout optimization problem. Thirdly, after obtaining the candidate solutions, we present a multi-attribute decision making approach, which integrates the smart Pareto filter and the correlation coefficient and standard deviation (CCSD) method to select the best tradeoff solutions on the optimal Pareto fronts. Finally, the framework and the decision making approach are applied to a case study of a satellite platform.展开更多
The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucke...The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucket layout was investigated.The whole muck transfer process was simulated by discrete-element method(DEM),including the muck falling,colliding,pilling up,shoveling and transferring into the hopper.The muck model was established based on size distribution analysis of muck samples from the water-supply tunnel project in Jilin Province,China.Then,the influence of the bucket number and the interval angle between buckets on muck removal performance was investigated.The results indicated that,as the number of buckets increased from four to eight,the removed muck increased by 29%and the residual volume decreased by 40.5%,and the process became steadier.Different interval angles between buckets were corresponding to different removed muck irregularly,but the residual muck number increased generally with the angles.The optimal layout of buckets for the cutterhead in this tunnel project was obtained based on the simulation results,and the muck removal performance of the TBM was verified by the actual data in the engineering construction.展开更多
This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes ar...This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones.展开更多
Underground mines require complex construction activities including the shaft, levels, raises, winzes and ore passes. In an underground mine based on stoping method, orebody part(s) maximizing profit should be determi...Underground mines require complex construction activities including the shaft, levels, raises, winzes and ore passes. In an underground mine based on stoping method, orebody part(s) maximizing profit should be determined. This process is called stope layout optimization (SLO) and implemented under site-specific geotechnical, operational and economic constraints. For practical purpose, the design obtained by SLO shows consecutive stopes in one path, which assists in defining the mining direction of these stopes. However, this direction may not accommodate the spatial distribution of the ore grade: if the orebody orientation and mining direction differ, the value of the mining operation may decrease. This paper proposes an approach whereby paths in the SLO are defined as decision variables to avoid the cost of mining in the wrong direction. Furthermore, in the genetic-based formulation, which accounts for orebody uncertainty, a robust cluster average design process is proposed to improve SLO’s performance regarding metal content. A case study in narrow gold vein deposit shows that the profit of an underground mining operation could be underestimated by 25%-48% if the algorithm ignores stope layout orientation.展开更多
The present situations of waste refrigerators recycling and disposing were analyzed. Three key technologies of layout design of recycling plants of waste refrigerators were presented as follows: 1) establishment of re...The present situations of waste refrigerators recycling and disposing were analyzed. Three key technologies of layout design of recycling plants of waste refrigerators were presented as follows: 1) establishment of recycling process of waste refrigerators; 2) the general plane layout of recycling plants; 3) the detailed layout of workshops of recycling plants. The focus of the three key technologies is to tackle the problem of the detailed layout of workshops of the recycling plants. By adopting Petri net, the model of logistics system of workshops was established and then optimized, and finally the detailed layout chart of recycling plants was gained. By adopting E-factory, the recycling plants were simulated. The results show that the method mentioned is effective.展开更多
The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of co...The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of concentrated-weight category freights,an improvement method is put forward to build freight towers and a greedy-construction algorithm is utilized based on heuristic information for the initial layout.Then a feasibility analysis is performed to judge if the balanced and unconcentrated loading constrains are reached.Through introducing optimization or adjustment methods,an overall optimal solution can be obtained.Experiments are conducted using data generated from real cases showing the effectiveness of our approach: volume utility ratio of 90.4% and load capacity utility ratio of 86.7% which is comparably even to the packing of the general freights.展开更多
In the construction of Three Gorges Project, the total amount of concrete is about 28 Mm\+3 , and the total amount of metal works and reinforcement is approximately 0.72 Mt . The TGP is constructed in 3 stages . The p...In the construction of Three Gorges Project, the total amount of concrete is about 28 Mm\+3 , and the total amount of metal works and reinforcement is approximately 0.72 Mt . The TGP is constructed in 3 stages . The preparation period together with the first stage is 5 years , the second stage and third stage are both 6 years .In the second stage construction of 6 years (1998~2003) , there are 18.46 Mm\+3 of concrete to be placed and 0.192 Mt of metal works and embedded parts for mechanical and electric equipment to be installed . In 1999, a world record of annual concrete placement of 4.585 Mm\+3 was set . In 2000, it is planned to place 5.4 Mm\+3 of concrete and to install 38 000 t of metal works . Construction equipments and layout of construction site , concrete production and its temperature control, metal works, mechanical and electric equipments in the second stage construction are presented.展开更多
Taking Beijing,China from 1949 to 2018 for example,this paper explores the changes of local residential layout and morphology during the past 70 years on the basis of relevant theoretical researches on urban spatial m...Taking Beijing,China from 1949 to 2018 for example,this paper explores the changes of local residential layout and morphology during the past 70 years on the basis of relevant theoretical researches on urban spatial morphology,and concludes the formation mechanism of these spatial forms in different periods by considering historical and social development,to provide the foundation for current studies on the residential layout and morphology.展开更多
In a commercialized, fully artificial plant factory, artificial luminaire is arranged in a unified way using a general illumination theory, an actual measurement, or an empirical methodology. However, with these metho...In a commercialized, fully artificial plant factory, artificial luminaire is arranged in a unified way using a general illumination theory, an actual measurement, or an empirical methodology. However, with these methods, lightings are implemented without considering specific optical characteristics of lighting or material characteristics of each component that constructs a cultivation system, resulting in an amount of light that becomes irregular. The amount of lighting is closely related with the growth and quality of crops, and the deviation between points where cultivated crops are located causes quality difference in the produced crops, thus impairing the economic feasibility of a plant factory. In this regard, a simulation to figure out an optimum lighting layout was performed. Arrangements based on the spectrum distribution of light source and reflector materials were implemented to ascertain the distance between lighting and height of lighting and gather information in the pre-treatment process to improve the uniformity of light in the plant cultivation system. Improvement of around 15% in light uniformity is achieved compared with the existing system after the simulation is carried out. This result would reduce the deviation in crop growth to make uniform quality crop production possible.展开更多
基金Projects(51275339,51575379,51675374)supported by the National Natural Science Foundation of ChinaProject(2013CB035402)supported by the National Hi-tech Research and Development Program of China
文摘Studies to date have failed to consider gage disc cutters’variable cutting depth and the constraints of cutter-head welds,and have ignored the coupling mechanism between the profile of the full-face rock tunnel-boring machine(TBM)cutter-head and the assembled radius layout of the disc cutters.To solve these problems,an adaptive design method for studying cutter layout was proposed.Taking the bearing stress of the outermost gage disc cutter as an index,the profile of the cutter-head was determined.Using a genetic algorithm and based on the principles of equal life and equal wear,the assembled radii of the cutters were optimally designed.Boundary conditions of non-interference between the cutters,manholes,muck buckets and welding lines were given when a star layout pattern was used on cutters.The cutter-head comprehensive evaluation model was established by adopting relative optimization improvement degree of evaluation indices to achieve dimensional consistency.Exemplifying the MB264-311-8030 mm tape TBM cutter-head,the calculations show that compared with the original layout scheme,among the 51 disc cutters,the largest gap of the cutters’assembled radiuses is only 25.8 mm,which is 0.64%of the cutter-head’s radius and is negligible.The cutter-head’s unbalanced radial force decreases by 62.41%,the overturning moment decreases by 33.22%,and the cutter group’s centroid shift increases by only 18.48%.Each index is better than or approximately equal to the original cutter-head layout scheme,and the equivalent stress and deformation are both smaller;these results fully verify the feasibility and effectiveness of the method.
基金Project(21805217)supported by the National Natural Science Foundation of ChinaProject(2015BAG08B02)supported by the National Key Technologies Research and Development Program of ChinaProject(2019IVB014)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Electric vehicle is a kind of new energy vehicle which uses batteries as energy supply unit.A huge gap in charging infrastructures will be created by the expansion of electric vehicles.The effectiveness and rationality of charging facilities will directly affect the convenience and economy of the users,as well as the safe operation of the power grid.Three types of charging facilities:charging pile,charging station and battery swap station are introduced in this paper.According to the different methods of charging infrastructure planning,the research status of the method of determining charging demand points is expounded.And the spatial distribution of charging demand points extracted by the current site selection method has a certain deviation.Then the models and algorithms of charging infrastructure optimized layout are reviewed.Currently,many researches focus on three categories optimization objectives:benefit of power company side,investment cost of charging facility and user side cost,and the genetic algorithm and particle swarm optimization are the main solving algorithms.Finally,the relative methods and development trend of the charging infrastructures optimized layout are summarized,and some suggestions on the optimized layout of electric vehicle charging infrastructures are given forward.
基金Project(51005238)supported by the National Natural Science Foundation of China
文摘To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainability was analyzed, and the layout problem for maintainability was presented. It was formulated as an optimization problem, where maintainability, layout space and distance requirement were formulated as objective functions. A multi-objective particle swarm optimization algorithm, in which the constrained-domination relationship and the update strategy of the global best were simply modified, was then used to obtain Pareto optimal solutions for the maintainability layout design problem. Finally, application in oxygen generation system of a spacecraft was studied in detail to illustrate the effectiveness and usefulness of the proposed method. The results show that the concurrent maintainability design can be carried out during the layout design process by solving the layout optimization problem for maintainability.
基金supported by the National Natural Science Foundation of China(51405499)
文摘A decision support system, including a multi-objective optimization framework and a multi-attribute decision making approach is proposed for satellite equipment layout. Firstly, given three objectives (to minimize the C.G. offset, the cross moments of inertia and the space debris impact risk), we develop a threedimensional layout optimization model. Unlike most of the previous works just focusing on mass characteristics of the system, a space debris impact risk index is developed. Secondly, we develop an efficient optimization framework for the integration of computer-aided design (CAD) software as well as the optimization algorithm to obtain the Pareto front of the layout optimization problem. Thirdly, after obtaining the candidate solutions, we present a multi-attribute decision making approach, which integrates the smart Pareto filter and the correlation coefficient and standard deviation (CCSD) method to select the best tradeoff solutions on the optimal Pareto fronts. Finally, the framework and the decision making approach are applied to a case study of a satellite platform.
基金Project(51475478)supported by the National Natural Science Foundation of ChinaProject(2012AA041801)supported by the National High Technology Research and Development Program of China+1 种基金Project(2014FJ1002)supported by the Science and Technology Major Project of Hunan Province,ChinaProject(2013CB035401)supported by the National Basic Research Program of China。
文摘The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucket layout was investigated.The whole muck transfer process was simulated by discrete-element method(DEM),including the muck falling,colliding,pilling up,shoveling and transferring into the hopper.The muck model was established based on size distribution analysis of muck samples from the water-supply tunnel project in Jilin Province,China.Then,the influence of the bucket number and the interval angle between buckets on muck removal performance was investigated.The results indicated that,as the number of buckets increased from four to eight,the removed muck increased by 29%and the residual volume decreased by 40.5%,and the process became steadier.Different interval angles between buckets were corresponding to different removed muck irregularly,but the residual muck number increased generally with the angles.The optimal layout of buckets for the cutterhead in this tunnel project was obtained based on the simulation results,and the muck removal performance of the TBM was verified by the actual data in the engineering construction.
基金Project(16B134)supported by Hunan Provincial Department of Education,China
文摘This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones.
基金Project(488262-15)supported by the Natural Sciences and Engineering Research Council of Canada
文摘Underground mines require complex construction activities including the shaft, levels, raises, winzes and ore passes. In an underground mine based on stoping method, orebody part(s) maximizing profit should be determined. This process is called stope layout optimization (SLO) and implemented under site-specific geotechnical, operational and economic constraints. For practical purpose, the design obtained by SLO shows consecutive stopes in one path, which assists in defining the mining direction of these stopes. However, this direction may not accommodate the spatial distribution of the ore grade: if the orebody orientation and mining direction differ, the value of the mining operation may decrease. This paper proposes an approach whereby paths in the SLO are defined as decision variables to avoid the cost of mining in the wrong direction. Furthermore, in the genetic-based formulation, which accounts for orebody uncertainty, a robust cluster average design process is proposed to improve SLO’s performance regarding metal content. A case study in narrow gold vein deposit shows that the profit of an underground mining operation could be underestimated by 25%-48% if the algorithm ignores stope layout orientation.
文摘The present situations of waste refrigerators recycling and disposing were analyzed. Three key technologies of layout design of recycling plants of waste refrigerators were presented as follows: 1) establishment of recycling process of waste refrigerators; 2) the general plane layout of recycling plants; 3) the detailed layout of workshops of recycling plants. The focus of the three key technologies is to tackle the problem of the detailed layout of workshops of the recycling plants. By adopting Petri net, the model of logistics system of workshops was established and then optimized, and finally the detailed layout chart of recycling plants was gained. By adopting E-factory, the recycling plants were simulated. The results show that the method mentioned is effective.
基金Project(71371193)supported by the National Natural Science Foundation of ChinaProjects(2005K1001,2007K1005)supported by Guangzhou-Shenzhen Railway Company Limited,China
文摘The optimization of high density and concentrated-weight freights loading requires an even distribution of the freight's weight and unconcentrated loading on the floor of the car.Based on the characteristics of concentrated-weight category freights,an improvement method is put forward to build freight towers and a greedy-construction algorithm is utilized based on heuristic information for the initial layout.Then a feasibility analysis is performed to judge if the balanced and unconcentrated loading constrains are reached.Through introducing optimization or adjustment methods,an overall optimal solution can be obtained.Experiments are conducted using data generated from real cases showing the effectiveness of our approach: volume utility ratio of 90.4% and load capacity utility ratio of 86.7% which is comparably even to the packing of the general freights.
文摘In the construction of Three Gorges Project, the total amount of concrete is about 28 Mm\+3 , and the total amount of metal works and reinforcement is approximately 0.72 Mt . The TGP is constructed in 3 stages . The preparation period together with the first stage is 5 years , the second stage and third stage are both 6 years .In the second stage construction of 6 years (1998~2003) , there are 18.46 Mm\+3 of concrete to be placed and 0.192 Mt of metal works and embedded parts for mechanical and electric equipment to be installed . In 1999, a world record of annual concrete placement of 4.585 Mm\+3 was set . In 2000, it is planned to place 5.4 Mm\+3 of concrete and to install 38 000 t of metal works . Construction equipments and layout of construction site , concrete production and its temperature control, metal works, mechanical and electric equipments in the second stage construction are presented.
文摘Taking Beijing,China from 1949 to 2018 for example,this paper explores the changes of local residential layout and morphology during the past 70 years on the basis of relevant theoretical researches on urban spatial morphology,and concludes the formation mechanism of these spatial forms in different periods by considering historical and social development,to provide the foundation for current studies on the residential layout and morphology.
基金financially supported by the Ministry of Education, Science, and Technology (MEST)the National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovationsupported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (No.20114010203040) grant funded by the Korean government’s Ministry of Knowledge Economy
文摘In a commercialized, fully artificial plant factory, artificial luminaire is arranged in a unified way using a general illumination theory, an actual measurement, or an empirical methodology. However, with these methods, lightings are implemented without considering specific optical characteristics of lighting or material characteristics of each component that constructs a cultivation system, resulting in an amount of light that becomes irregular. The amount of lighting is closely related with the growth and quality of crops, and the deviation between points where cultivated crops are located causes quality difference in the produced crops, thus impairing the economic feasibility of a plant factory. In this regard, a simulation to figure out an optimum lighting layout was performed. Arrangements based on the spectrum distribution of light source and reflector materials were implemented to ascertain the distance between lighting and height of lighting and gather information in the pre-treatment process to improve the uniformity of light in the plant cultivation system. Improvement of around 15% in light uniformity is achieved compared with the existing system after the simulation is carried out. This result would reduce the deviation in crop growth to make uniform quality crop production possible.