Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau...Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.展开更多
The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water sp...The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water splitting cells. Layered double hydroxides(LDHs) and their derivatives(e.g., transition metal alloys, oxides, sulfides, nitrides and phosphides) have been adopted as catalysts for various electrochemical reactions, such as oxygen reduction, oxygen evolution, hydrogen evolution, and COreduction, which show excellent activity and remarkable durability in electrocatalytic process. In this review, the synthesis strategies, structural characters and electrochemical performances for the LDHs and their derivatives are described. In addition, we also discussed the effect of electronic and geometry structures to their electrocatalytic activity. The further development of high-performance electrocatalysts based on LDHs and their derivatives is covered by both a short summary and future outlook from the viewpoint of the material design and practical application.展开更多
The high energy demand we currently face in society and the subsequent large consumption of fossil fuels cause its depletion and increase the pollution levels.The quest for the production of clean energy from renewabl...The high energy demand we currently face in society and the subsequent large consumption of fossil fuels cause its depletion and increase the pollution levels.The quest for the production of clean energy from renewable and sustainable sources remains open.The conversion of solar energy into hydrogen via the water-splitting process,assisted by pho tores pons ive semiconductor catalysts,is one of the most promising technologies.Significant progress has been made on water splitting in the past few years and a variety of photocatalysts active not only under ultra-violet(UV) light but especially with the visible part of the electromagnetic spectrum have been developed.Layered double hydroxides(LDH)-based materials have emerged as a promising class of nanomaterials for solar energy applications owing to their unique layered structure,compositional flexibility,tunable bandgaps,ease of synthesis and low manufacturing costs.This review covers the most recent research dedicated to LDH materials for photocatalytic water-splitting applications and encompasses a range of synthetic strategies and post-modifications used to enhance their performance.Moreover,we provide a thorough discussion of the experimental conditions crucial to obtaining improved photoactivity and highlight the impact of some specific parameters,namely,catalysts loading,cocatalysts,sacrificial agents,and irradiation sources.This review provides the necessary tools to select the election technique for adequately enhancing the photoactivity of LDH and modified LDH-based materials and concludes with a critical summary that outlines further research directions.展开更多
Oxygen evolution reaction(OER) is a bottle-neck process in many sustainable energy conversion systems due to its sluggish kinetics.The development of cost-effective yet efficient electrocatalysts towards OER is highly...Oxygen evolution reaction(OER) is a bottle-neck process in many sustainable energy conversion systems due to its sluggish kinetics.The development of cost-effective yet efficient electrocatalysts towards OER is highly desirable but still a great challenge at current stage.Herein,a new type of hybrid nanostructure,consisting of two-dimensional(2D) Cerium-doped NiFe-layered double hydroxide nanoflakes directly grown on the 2D Ti3C2Tx MXene surface(denoted as NiFeCe-LDH/MXene),is designed using a facile insitu coprecipitation method.The resultant NiFeCe-LDH/MXene hybrid presents a hierarchical nanoporous structure,high electrical conductivity and strong interfacial junction because of the synergistic effect of Ce doping and MXene coupling.As a result,the hybrid catalyst exhibits an excellent catalytic activity for OER,delivering a low onset overpotential of 197 mV and an overpotential of 260 mV at a current density of 10 mA·cm-2 in the alkaline medium,much lower than its pure LDH counterparts and IrO2 catalyst.Besides,the hybrid catalyst also displays a fast reaction kinetics and a remarkable stable durability.Further theoretic studies using density function theory(DFT) methods reveal that Ce doping could effectively narrow the bandgap of NiFe-LDH and reduce the overpotential in OER process.This work may shed light on the exploration of advanced electrocatalysts for renewable energy conversion and storage systems.展开更多
One of the fundamental driving forces in the materials science community is the hunt for new materials with specific properties that meet the requirements of rapidly evolving technology.
Photocatalytic reduction of CO2 with H2 O to syngas is an effective way for producing high value-added chemical feedstocks such as methanol and light olefins in industry.Nevertheless,the precise control of CO/H2 ratio...Photocatalytic reduction of CO2 with H2 O to syngas is an effective way for producing high value-added chemical feedstocks such as methanol and light olefins in industry.Nevertheless,the precise control of CO/H2 ratio from photocatalytic CO2 reduction reaction still poses a great challenge for the further application.Herein,we prepared a series of highly efficient heterostructure based on highly dispersed palladium supported on ultrathin Co Al-layered double hydroxide(LDH).In conjunction with a Ru-complex sensitizer,the molar ratios of CO/H2 can be tuned from 1:0.74 to 1:3 under visible-light irradiation(λ>400 nm).More interestingly,the syngas can be obtained under light irradiation atλ>600 nm.Structure characterization and density functional theory calculations revealed that the remarkable catalytic activity can be due to the supported palladium,which improved the charge transfer efficiency.Meanwhile,more H atoms were used to generate H2 on the supported palladium for further tunable CO/H2 ratio.This work demonstrates a new strategy for harnessing abundant solar-energy to produce syngas from a CO2 feedstock.展开更多
Monolithic catalysts for CO_(2) methanation have become an active research area for the industrial development of Power-to-Gas technology.In this study,we developed a facile and reproducible synthesis strategy for the...Monolithic catalysts for CO_(2) methanation have become an active research area for the industrial development of Power-to-Gas technology.In this study,we developed a facile and reproducible synthesis strategy for the preparation of structured NiFe catalysts on washcoated cordierite monoliths for CO_(2) methanation.The NiFe catalysts were derived from in-situ grown layered double hydroxides(LDHs)via urea hydrolysis.The influence of different washcoat materials,i.e.,alumina and silica colloidal suspensions on the formation of LDHs layer was investigated,together with the impact of total metal concentration.NiFe LDHs were precipitated on the exterior surface of cordierite washcoated with alumina,while it was found to deposit further inside the channel wall of monolith washcoated with silica due to different intrinsic properties of the colloidal solutions.On the other hand,the thickness of in-situ grown LDHs layers and the catalyst loading could be increased by high metal concentration.The best monolithic catalyst(COR-AluCC-0.5M)was robust,having a thin and well-adhered catalytic layer on the cordierite substrate.As a result,high methane yield was obtained from CO_(2) methanation at high flow rate on this structured NiFe catalysts.The monolithic catalysts appeared as promising structured catalysts for the development of industrial methanation reactor.展开更多
Co–Mo catalysts applied on the hydrodesulfurization(HDS) for FCC gasoline were prepared with Zn–Al layered double hydroxides(LDHs) to improve their performances,and the effects of pore structures and acidity on ...Co–Mo catalysts applied on the hydrodesulfurization(HDS) for FCC gasoline were prepared with Zn–Al layered double hydroxides(LDHs) to improve their performances,and the effects of pore structures and acidity on HDS performances were studied in detail. A series of Zn–Al/LDHs samples with different pore structures and acidities are synthesized on the bases of co-precipitation of OH-,CO2-,Al3+,and Zn2+. The neutralization p H is a main factor to affect the pore structures and acidity of Zn–Al/LDHs,and a series of Zn–Al/LDHs with different pore structures and acidities are obtained. Based on the representative samples with different specific surface areas(SBET) and acidities,three Co Mo/LDHs catalysts were prepared,and their HDS performances were compared with traditional Co Mo/Al2O3 catalysts. The results indicated that catalysts prepared with high SBETpossessed high HDS activity,and Br?nsted acid sites could reduce the thiol content in the product to some extent. All the three catalysts prepared with LDHs displayed little lower HDS activity but higher selectivity than Co Mo/Al2O3,and could restrain the reactions of re-combination between olefin and H2 S which could be due to the existence of Br?nsted acid sites.展开更多
Three-dimensional(3D) flower-like Co–Al layered double hydroxide(Co–Al-LDH) architectures composed of atomically thin nanosheets were successfully synthesized via a hydrothermal method in a mixed solvent of water an...Three-dimensional(3D) flower-like Co–Al layered double hydroxide(Co–Al-LDH) architectures composed of atomically thin nanosheets were successfully synthesized via a hydrothermal method in a mixed solvent of water and butyl alcohol. Owing to the unique hierarchical structure and modification by butyl alcohol, the electrochemical stability and the charge/mass transport of the Co–Al-LDHs was improved. When used in supercapacitors, the obtained Co–Al-LDHs deliver a high specific capacitance of 838 Fg^(-1) at a current density of 1 Ag^(-1)and excellent rate performance(753 Fg^(-1) at 30 Ag^(-1) and 677 Fg^(-1) at 100 Ag^(-1)), as well as excellent cycling stability with 95% retention of the initial capacitance even after 20,000 cycles at a current density of 5 Ag^(-1). This work provides a promising alternative strategy to enhance the electrochemical properties of supercapacitors.展开更多
Oxygen evolution reaction(OER) plays an indispensable role in developing renewable clean energy resources. One of the critical bottlenecks for the reaction is the development of highly efficient electrocatalyst to dec...Oxygen evolution reaction(OER) plays an indispensable role in developing renewable clean energy resources. One of the critical bottlenecks for the reaction is the development of highly efficient electrocatalyst to decrease the high overpotentials of four-electron transfer process of OER. Recently, layered double hydroxides(LDHs) have been widely investigated among the most promising electrocatalysts for OER due to their high intrinsic activity, excellent stability as well as low-cost. However, it remains unclear how the exposed facet of the LDHs affects their electrocatalytic activity. Here we elucidate the active edge facet of LDHs towards OER by combining the finely control of edge facet ratio coupled with molecular probe method and computational calculation. The LDHs with higher edge facet area ratio show superior activity with low onset potential as well as decreased Tafel slope. The active edge site is further proved by blocking the unsaturated edge sites with cyanate probe anion, of which the adsorption largely inhibits OER activity. Furthermore, based on density functional theory(DFT) calculation, twodimensional map of theoretical overpotentials as a function of Gibbs free energy reveals that the edge(100) facet exhibits a much higher OER activity than basal plane(001) facet.展开更多
The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH...The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH template which was pre-deposited onto the carbon cloth substrate.In this electrode configuration,carbon cloth is the three dimensional and conductive skeleton;NiCo-LDH nanosheets,as the template,ensure the oriented growth of MoS2 nanosheet arrays.Therefore,more MoS_(2) active sites are exposed and the catalyst exhibits good hydrogen evolution reaction activity.展开更多
Layered double hydroxide(LDH),a kind of 2D layered materials,has been recognized as the promising anticorrosion materials for metal and its alloy.The microstructure,physical/chemical properties,usage in corrosion inhi...Layered double hydroxide(LDH),a kind of 2D layered materials,has been recognized as the promising anticorrosion materials for metal and its alloy.The microstructure,physical/chemical properties,usage in corrosion inhibition and inhibition performance of LDH have been studied separately in open literature.However,there is a lack of a complete review to summarize the status of LDH technology and the potential R&D opportunities in the field of corrosion inhibition.In addition,the challenges for LDH in corrosion inhibition of metal-based system have not been summarized systematically.Herein,we review recent advances in the rational design of LDH for corrosion inhibition of metal-based system(i.e.Mg alloy,Al alloy,steel and concrete)and high-throughput anticorrosion materials development.By evaluating the physical/chemical properties,usage in metal-based system and the corrosion inhibition mechanism of LDH,we highlight several important factors of LDH for anticorrosion performance and common features of LDH in applying different metal alloys.Finally,we provide our perspective and recommendation in this field,including high-throughput techiniques for combinatorial compositional design and rapid synthesis of anticorrosion alloys,with the goal of accelerating the development and application of LDH in corrosion inhibition of metal-based system.展开更多
Rationally manipulating surface reconstruction of catalysts for water oxidation,inducing formation and dynamic accumulation of catalytically active centers still face numerous challenges.Herein,the introduction of[Cr(...Rationally manipulating surface reconstruction of catalysts for water oxidation,inducing formation and dynamic accumulation of catalytically active centers still face numerous challenges.Herein,the introduction of[Cr(C_(2)O_(4))_(3)]^(3-)into NiFe LDHs by intercalation engineering to promote surface reconstruction achieves an advanced oxygen evolution reaction(OER)activity.In view of the weak electronegativity of Cr^(3+) in[Cr(C_(2)O_(4))_(3)]^(3-),the intercalation of[Cr(C_(2)O_(4))_(3)]^(3-)is expected to result in an electron-rich structure of Fe sites in NiFe LDHs,and higher valence state of Ni can be formed with the charge transfer between Fe and Ni.The optimized electronic structure of NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs with more active Ni^(3+) species and the expedited dynamic generation of Ni^(3+) (Fe)OOH phase during the OER process contributed to its excellent catalytic property,revealed by in situ X-ray absorption spectroscopy,Raman spectroscopy,and quasi-in situ X-ray photoelectron spectroscopy.With the modulated electronic structure of metal sites,NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs exhibited promoted OER property with a lower overpotential of 236 mV at the current density of 10 mA cm^(-2).This work illustrates the intercalation of conjugated anion to dynamically construct desired Ni^(3+) sites with the optimal electronic environment for improved OER electrocatalysis.展开更多
Lithium-ion(Li-ion) battery and lithium-sulfur(Li-S) battery have attracted significant attention as promising components for large-scale energy storage because of high theoretical capacity of Li,excellent energy dens...Lithium-ion(Li-ion) battery and lithium-sulfur(Li-S) battery have attracted significant attention as promising components for large-scale energy storage because of high theoretical capacity of Li,excellent energy density or environmental friendness for two kinds of batteries.However,there still exist some respective obstacles for commercial applications,such as limited theoretical capacity,high cost and low conductivity of Li-ion cells or shuttle effect of lithium polysulfides of Li-S cells.As typical twodimensional materials,layered double hydroxides(LDHs) exhibit excellent potential in the field of energy storage due to facile tunability of composition,structure and morphology as well as convenient composite and strong catalytic properties.Consequently,various LDHs toward novel separators or interlayers,cathodes,anodes,and interesting catalytic templates are researched to resolve these challenges.In this review,the recent progress for LDHs applied in Li-ion batteries and Li-S batteries including the synthesis methods,designs and applications is presented and reviewed.Meanwhile,the existing challenges and future perspectives associated with material designs and practical applications of LDHs for these two classes of cells are discussed.WeWe hope that the review can attract more attention and inspire more profound researches toward the LDH-based electrochemical materials for energy storage.展开更多
Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,...Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,we fabricated self-supported ultrathin NiCo layered double hydroxides(LDHs)electrodes as anode for methanol electrooxidation to achieve a high formate production rate(5.89 mmol h^(-1)cm^(-2))coupled with CO_(2)electro-reduction at the cathode.A total formate faradic efficiency of both anode for methanol oxidation and cathode for CO_(2)reduction can reach up to 188%driven by a low cell potential of only 2.06 V at 100 mA cm^(-2)in membrane-electrode assembly(MEA).Physical characterizations demonstrated that Ni^(3+)species,formed on the electrochemical oxidation of Ni-containing hydroxide,acted as catalytically active species for the oxidation of methanol to formate.Furthermore,DFT calculations revealed that ultrathin LDHs were beneficial for the formation of Ni^(3+)in hydroxides and introducing oxygen vacancy in NiCo-LDH could decrease the energy barrier of the rate-determining step for methanol oxidation.This work presents a promising approach for fabricating advanced electrodes towards electrocatalytic reactions.展开更多
The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide...The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide(Co_3O_4)nanowire cores are grown on nickel foam prior to the growth of layered double hydroxide(LDH)shells is fabricated.Hydrothermal precipitation and thermal treatment result in homogeneous forests of 70-nm diameter Co_3O_4 nanowire,which are wrapped in LDH-nanosheet-built porous covers through a liquid phase deposition method.Due to the unique core-shell architecture and the synergetic effects of Co_3O_4and NiAl-LDH,the obtained Co_3O_4@LDH electrode exhibits a capacitance of 1 133.3F/g at a current density of 2A/g and 688.8F/g at 20A/g(5.3F/cm^(2 )at 9.4mA/cm^(2 )and 3.2F/cm^(2 )at 94mA/cm^2),which are better than those of the individual Co_3O_4nanowire.Moreover,the electrode shows excellent cycling performance with a retention rate of 90.4%after 3 000cycles at a current density of 20A/g.展开更多
Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of ...Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of water electrolysis for sustainable hydrogen production.Despite their excellent OER performance,the structural and electronic properties of LDHs,particularly during the OER process,remain to be poorly understood.In this study,a series of LDH catalysts is investigated through in situ X-ray absorption fine structure analyses and density functional theory(DFT) calculations.Our experimental results reveal that the LDH catalyst with equal amounts of Ni and Fe(NF-LDH) exhibits the highest OER activity and catalytic life span when compared with its counterparts having equal amounts of Ni and Co(NC-LDH)and Ni only(Ni-LDH).The NF-LDH shows a markedly enhanced OER kinetics compared to the NC-LDH and the Ni-LDH,as proven by the lower overpotentials of 180,240,and 310 mV,respectively,and the Tafel slopes of 35.1,43.4,and 62.7 mV dec^(-1),respectively.The DFT calculations demonstrate that the lowest overpotential of the NF-LDH is associated with the active sites located at the edge planes of NF-LDH in contrast to those located at the basal planes of Ni-LDH and NC-LDH.The current study pinpoints the active sites on various LDHs and presents strategies for optimizing the OER performance of the LDH catalysts.展开更多
Layered double hydroxides(LDHs)have received extensive attention in many fields such as catalysis,environmental management and medical applications.Typically,expensive soluble metal salts are commonly used as the star...Layered double hydroxides(LDHs)have received extensive attention in many fields such as catalysis,environmental management and medical applications.Typically,expensive soluble metal salts are commonly used as the starting materials for the synthesis of LDHs.Here,we report a novel synthesis route for Mg/Al-LDH by using inexpensive basic magnesium carbonate as the starting material.X-ray diffraction(XRD)and solid-state nuclear magnetic resonance(ssNMR)data show that LDHs with rich defects are formed rapidly at room temperature and good crystallinity can be obtained after further hydrothermal treatment.These results provide a simple,rapid and green preparation method for LDHs.展开更多
Flexible aqueous Ni//Zn batteries have attracted much attention as promising candidates for energy storage in the field of flexible electronics.However,the Ni-based cathodes still face the challenges of poor conductiv...Flexible aqueous Ni//Zn batteries have attracted much attention as promising candidates for energy storage in the field of flexible electronics.However,the Ni-based cathodes still face the challenges of poor conductivity,confined charge/mass transfer,and non-flexibility.In this work,we designed a hollow tubular structure consisting of a conductive silver nanowire (Ag NW) wrapped by active Ni Co layered double hydroxide (LDH),for enhancing the electrical conductivity,improving the charge/mass transfer kinetics,and facilitating the ion penetration.By optimizing the contents of Ni,Co and Ag NW,the Ni_(4)Co LDH@Ag_(1.5)NW composite shows a maximum specific capacity of 115.83 m Ah g^(-1)at 0.1 A g^(-1)measured in a two-electrode system.Highlightingly,the flexible aqueous Ni//Zn battery assembled by Ni_(4)Co LDH@Ag_(1.5)NW interwoven with multi-walled carbon nanotube cathode and Zn foil anode realizes a high power density of 160μW cm^(-2)at the energy density of 23.14μWh cm^(-2),which is superior compared with those of oxide/hydroxide based devices and even higher than those of many carbon-based supercapacitors,showing its promising potentials for flexible energy storage applications.展开更多
A homogeneous better-dispersed ultrathin nanosheets(ca. 5 nm) of cobalt-nickel layered double hydroxides(LDH) supported on nickel foam scaffold was synthesized using controllable electrodeposition approach for hig...A homogeneous better-dispersed ultrathin nanosheets(ca. 5 nm) of cobalt-nickel layered double hydroxides(LDH) supported on nickel foam scaffold was synthesized using controllable electrodeposition approach for high efficiency electrode materials of new supercapacitor. The morphology and electrochemical performances of the samples can be controlled by adjusting the precursor ratio, i.e., Ni(OAc)2/Co(NO3)2 molar ratio in the electrodeposition approach. With the increase of this molar ratio, the electrochemical performances give a volcano trend. When the optimized molar ratio is 0.64/0.36, the hybrid delivered a high specific capacitance of 1587.5 F g-1 at a current density of 0.5 A g-1, with good rate capability(1155 F g-1 was retained even at 10 A g-1) and a robust recycle stability(remaining 91.5% after 1000 cycles at 5 A g-1). The good performance could be attributed to the enlarged interlayer spacing, ultrathin nanosheets and synergistic effects between Co(OH)2 and Ni(OH)2. Furthermore, an asymmetric supercapacitor with a high energy density of 34.5 Wh kg-1 at 425 W kg-1 and excellent cycling stability of 85.4% after 5000 charge-discharge cycles at 2 A g-1 was fabricated. We believe that this fantabulous new electrode material would have encouraging applications in electrochemical energy storage and a wide readership.展开更多
基金support from the Free Exploration Project of Frontier Technology for Laoshan Laboratory(No.16-02)the National Natural Science Foundation of China(Nos.22072015 and 21927811)。
文摘Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.
基金supported by the National Natural Science Foundation of China(Nos.U146211821601011)+2 种基金the 973 Program(Grant No.2014CB932102)the Fundamental Research Funds for the Central Universities(buctrc201506PYCC1704)
文摘The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water splitting cells. Layered double hydroxides(LDHs) and their derivatives(e.g., transition metal alloys, oxides, sulfides, nitrides and phosphides) have been adopted as catalysts for various electrochemical reactions, such as oxygen reduction, oxygen evolution, hydrogen evolution, and COreduction, which show excellent activity and remarkable durability in electrocatalytic process. In this review, the synthesis strategies, structural characters and electrochemical performances for the LDHs and their derivatives are described. In addition, we also discussed the effect of electronic and geometry structures to their electrocatalytic activity. The further development of high-performance electrocatalysts based on LDHs and their derivatives is covered by both a short summary and future outlook from the viewpoint of the material design and practical application.
基金financially supported by: the Base Funding–UIDB/50020/2020 of the Associate Laboratory LSRE-LCM–funded by national funds through FCT/MCTES (PIDDAC) and project 2DMAT4FUEL (POCI-01-0145-FEDER-029600-COMPETE2020-FCT/ MCTES-PIDDAC, Portugal)Oea D-Ernst Mach Grant worldwide, Vienna, Austriathe support of the Austrian Science Fund (FWF), project number P32801.
文摘The high energy demand we currently face in society and the subsequent large consumption of fossil fuels cause its depletion and increase the pollution levels.The quest for the production of clean energy from renewable and sustainable sources remains open.The conversion of solar energy into hydrogen via the water-splitting process,assisted by pho tores pons ive semiconductor catalysts,is one of the most promising technologies.Significant progress has been made on water splitting in the past few years and a variety of photocatalysts active not only under ultra-violet(UV) light but especially with the visible part of the electromagnetic spectrum have been developed.Layered double hydroxides(LDH)-based materials have emerged as a promising class of nanomaterials for solar energy applications owing to their unique layered structure,compositional flexibility,tunable bandgaps,ease of synthesis and low manufacturing costs.This review covers the most recent research dedicated to LDH materials for photocatalytic water-splitting applications and encompasses a range of synthetic strategies and post-modifications used to enhance their performance.Moreover,we provide a thorough discussion of the experimental conditions crucial to obtaining improved photoactivity and highlight the impact of some specific parameters,namely,catalysts loading,cocatalysts,sacrificial agents,and irradiation sources.This review provides the necessary tools to select the election technique for adequately enhancing the photoactivity of LDH and modified LDH-based materials and concludes with a critical summary that outlines further research directions.
基金supported by the Science Foundation of China University of Petroleum, Beijing (No. 2462017YJRC013)。
文摘Oxygen evolution reaction(OER) is a bottle-neck process in many sustainable energy conversion systems due to its sluggish kinetics.The development of cost-effective yet efficient electrocatalysts towards OER is highly desirable but still a great challenge at current stage.Herein,a new type of hybrid nanostructure,consisting of two-dimensional(2D) Cerium-doped NiFe-layered double hydroxide nanoflakes directly grown on the 2D Ti3C2Tx MXene surface(denoted as NiFeCe-LDH/MXene),is designed using a facile insitu coprecipitation method.The resultant NiFeCe-LDH/MXene hybrid presents a hierarchical nanoporous structure,high electrical conductivity and strong interfacial junction because of the synergistic effect of Ce doping and MXene coupling.As a result,the hybrid catalyst exhibits an excellent catalytic activity for OER,delivering a low onset overpotential of 197 mV and an overpotential of 260 mV at a current density of 10 mA·cm-2 in the alkaline medium,much lower than its pure LDH counterparts and IrO2 catalyst.Besides,the hybrid catalyst also displays a fast reaction kinetics and a remarkable stable durability.Further theoretic studies using density function theory(DFT) methods reveal that Ce doping could effectively narrow the bandgap of NiFe-LDH and reduce the overpotential in OER process.This work may shed light on the exploration of advanced electrocatalysts for renewable energy conversion and storage systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.21701043,21825201 and U19A2017)the Provincial Natural Science Foundation of Hunan(2019GK2031)+1 种基金the Open Project Program of Key Laboratory of Low Dimensional Materials&Application Technology(Xiangtan University),Ministry of Education,China(No.KF20180202)the China Postdoctoral Science Foundation(Grant Nos.2019 M662766,2019 M662759,2020 M682549,and 2020 M672473)。
文摘One of the fundamental driving forces in the materials science community is the hunt for new materials with specific properties that meet the requirements of rapidly evolving technology.
基金supported by the Fundamental Research Funds for the Central Universities(XK1802-6,XK1902,XK1803-05,12060093063,2312018RC07)the National Natural Science Foundation of China(U1707603,21878008,21625101,20190816)。
文摘Photocatalytic reduction of CO2 with H2 O to syngas is an effective way for producing high value-added chemical feedstocks such as methanol and light olefins in industry.Nevertheless,the precise control of CO/H2 ratio from photocatalytic CO2 reduction reaction still poses a great challenge for the further application.Herein,we prepared a series of highly efficient heterostructure based on highly dispersed palladium supported on ultrathin Co Al-layered double hydroxide(LDH).In conjunction with a Ru-complex sensitizer,the molar ratios of CO/H2 can be tuned from 1:0.74 to 1:3 under visible-light irradiation(λ>400 nm).More interestingly,the syngas can be obtained under light irradiation atλ>600 nm.Structure characterization and density functional theory calculations revealed that the remarkable catalytic activity can be due to the supported palladium,which improved the charge transfer efficiency.Meanwhile,more H atoms were used to generate H2 on the supported palladium for further tunable CO/H2 ratio.This work demonstrates a new strategy for harnessing abundant solar-energy to produce syngas from a CO2 feedstock.
文摘Monolithic catalysts for CO_(2) methanation have become an active research area for the industrial development of Power-to-Gas technology.In this study,we developed a facile and reproducible synthesis strategy for the preparation of structured NiFe catalysts on washcoated cordierite monoliths for CO_(2) methanation.The NiFe catalysts were derived from in-situ grown layered double hydroxides(LDHs)via urea hydrolysis.The influence of different washcoat materials,i.e.,alumina and silica colloidal suspensions on the formation of LDHs layer was investigated,together with the impact of total metal concentration.NiFe LDHs were precipitated on the exterior surface of cordierite washcoated with alumina,while it was found to deposit further inside the channel wall of monolith washcoated with silica due to different intrinsic properties of the colloidal solutions.On the other hand,the thickness of in-situ grown LDHs layers and the catalyst loading could be increased by high metal concentration.The best monolithic catalyst(COR-AluCC-0.5M)was robust,having a thin and well-adhered catalytic layer on the cordierite substrate.As a result,high methane yield was obtained from CO_(2) methanation at high flow rate on this structured NiFe catalysts.The monolithic catalysts appeared as promising structured catalysts for the development of industrial methanation reactor.
文摘Co–Mo catalysts applied on the hydrodesulfurization(HDS) for FCC gasoline were prepared with Zn–Al layered double hydroxides(LDHs) to improve their performances,and the effects of pore structures and acidity on HDS performances were studied in detail. A series of Zn–Al/LDHs samples with different pore structures and acidities are synthesized on the bases of co-precipitation of OH-,CO2-,Al3+,and Zn2+. The neutralization p H is a main factor to affect the pore structures and acidity of Zn–Al/LDHs,and a series of Zn–Al/LDHs with different pore structures and acidities are obtained. Based on the representative samples with different specific surface areas(SBET) and acidities,three Co Mo/LDHs catalysts were prepared,and their HDS performances were compared with traditional Co Mo/Al2O3 catalysts. The results indicated that catalysts prepared with high SBETpossessed high HDS activity,and Br?nsted acid sites could reduce the thiol content in the product to some extent. All the three catalysts prepared with LDHs displayed little lower HDS activity but higher selectivity than Co Mo/Al2O3,and could restrain the reactions of re-combination between olefin and H2 S which could be due to the existence of Br?nsted acid sites.
基金supported by the National Basic Research Program of China(2014CB239702)Research project of environmental protection in Jiangsu province(2016060)Science and Technology Commission of Shanghai Municipality(14DZ2250800)
文摘Three-dimensional(3D) flower-like Co–Al layered double hydroxide(Co–Al-LDH) architectures composed of atomically thin nanosheets were successfully synthesized via a hydrothermal method in a mixed solvent of water and butyl alcohol. Owing to the unique hierarchical structure and modification by butyl alcohol, the electrochemical stability and the charge/mass transport of the Co–Al-LDHs was improved. When used in supercapacitors, the obtained Co–Al-LDHs deliver a high specific capacitance of 838 Fg^(-1) at a current density of 1 Ag^(-1)and excellent rate performance(753 Fg^(-1) at 30 Ag^(-1) and 677 Fg^(-1) at 100 Ag^(-1)), as well as excellent cycling stability with 95% retention of the initial capacitance even after 20,000 cycles at a current density of 5 Ag^(-1). This work provides a promising alternative strategy to enhance the electrochemical properties of supercapacitors.
基金supported by the National Natural Science Foundation of China (21871021, 21922501 and 21521005)the Beijing Natural Science Foundation (2192040)the Fundamental Research Funds for the Central Universities (XK1802-6 and XK1803-05)。
文摘Oxygen evolution reaction(OER) plays an indispensable role in developing renewable clean energy resources. One of the critical bottlenecks for the reaction is the development of highly efficient electrocatalyst to decrease the high overpotentials of four-electron transfer process of OER. Recently, layered double hydroxides(LDHs) have been widely investigated among the most promising electrocatalysts for OER due to their high intrinsic activity, excellent stability as well as low-cost. However, it remains unclear how the exposed facet of the LDHs affects their electrocatalytic activity. Here we elucidate the active edge facet of LDHs towards OER by combining the finely control of edge facet ratio coupled with molecular probe method and computational calculation. The LDHs with higher edge facet area ratio show superior activity with low onset potential as well as decreased Tafel slope. The active edge site is further proved by blocking the unsaturated edge sites with cyanate probe anion, of which the adsorption largely inhibits OER activity. Furthermore, based on density functional theory(DFT) calculation, twodimensional map of theoretical overpotentials as a function of Gibbs free energy reveals that the edge(100) facet exhibits a much higher OER activity than basal plane(001) facet.
基金financial support for this work from the Strategic Priority Research Program of CAS(XDB36030000)the National Natural Science Foundation of China(21422303,21573049,21872043,22002028)+3 种基金the National Basic Research Plan of China(2016YFA0201600)the Beijing Natural Science Foundation(2142036)the Youth Innovation Promotion Associationthe Special Program of “One Belt One Road”of CAS。
文摘The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH template which was pre-deposited onto the carbon cloth substrate.In this electrode configuration,carbon cloth is the three dimensional and conductive skeleton;NiCo-LDH nanosheets,as the template,ensure the oriented growth of MoS2 nanosheet arrays.Therefore,more MoS_(2) active sites are exposed and the catalyst exhibits good hydrogen evolution reaction activity.
基金the Graduate Research and innovation of Chongqing,China(Grant No.CYB20005)the project of Technological Innovation and Application Development in Chongqing(cstc2019jscxmsxm0378)+8 种基金the National Natural Science Foundation of China(Grant Nos.51908092)the Joint Funds of the National Natural Science Foundation of China-Guangdong(Grant No.U1801254)the project funded by Chongqing Special Postdoctoral Science Foundation(XmT2018043)Natural Science Foundation Project of Chongqing for Post-doctor(cstc2019jcyjbsh0079)Technological projects of Chongqing Municipal Education Commission(KJZDK201800801)Projects(No.2020CDJXZ001,2020CDCGJ006 and 2020CDCGCL004)the Fundamental Research Funds for the Central Universitiesthe Innovative Research Team of Chongqing(CXTDG201602014)the Innovative technology of New materials and metallurgy(2019CDXYCL0031).
文摘Layered double hydroxide(LDH),a kind of 2D layered materials,has been recognized as the promising anticorrosion materials for metal and its alloy.The microstructure,physical/chemical properties,usage in corrosion inhibition and inhibition performance of LDH have been studied separately in open literature.However,there is a lack of a complete review to summarize the status of LDH technology and the potential R&D opportunities in the field of corrosion inhibition.In addition,the challenges for LDH in corrosion inhibition of metal-based system have not been summarized systematically.Herein,we review recent advances in the rational design of LDH for corrosion inhibition of metal-based system(i.e.Mg alloy,Al alloy,steel and concrete)and high-throughput anticorrosion materials development.By evaluating the physical/chemical properties,usage in metal-based system and the corrosion inhibition mechanism of LDH,we highlight several important factors of LDH for anticorrosion performance and common features of LDH in applying different metal alloys.Finally,we provide our perspective and recommendation in this field,including high-throughput techiniques for combinatorial compositional design and rapid synthesis of anticorrosion alloys,with the goal of accelerating the development and application of LDH in corrosion inhibition of metal-based system.
基金support from the National Natural Science Foundation of China(51402100,21905088,21573066 and U19A2017)the Provincial Natural Science Foundation of Hunan(2020JJ5044,2022JJ10006)。
文摘Rationally manipulating surface reconstruction of catalysts for water oxidation,inducing formation and dynamic accumulation of catalytically active centers still face numerous challenges.Herein,the introduction of[Cr(C_(2)O_(4))_(3)]^(3-)into NiFe LDHs by intercalation engineering to promote surface reconstruction achieves an advanced oxygen evolution reaction(OER)activity.In view of the weak electronegativity of Cr^(3+) in[Cr(C_(2)O_(4))_(3)]^(3-),the intercalation of[Cr(C_(2)O_(4))_(3)]^(3-)is expected to result in an electron-rich structure of Fe sites in NiFe LDHs,and higher valence state of Ni can be formed with the charge transfer between Fe and Ni.The optimized electronic structure of NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs with more active Ni^(3+) species and the expedited dynamic generation of Ni^(3+) (Fe)OOH phase during the OER process contributed to its excellent catalytic property,revealed by in situ X-ray absorption spectroscopy,Raman spectroscopy,and quasi-in situ X-ray photoelectron spectroscopy.With the modulated electronic structure of metal sites,NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs exhibited promoted OER property with a lower overpotential of 236 mV at the current density of 10 mA cm^(-2).This work illustrates the intercalation of conjugated anion to dynamically construct desired Ni^(3+) sites with the optimal electronic environment for improved OER electrocatalysis.
基金the National Natural Science Foundation of China(51973157,51673148 and 51678411)the Special Grade of the Financial Support from the China Postdoctoral Science Foundation(2020 T130469)+1 种基金the China Postdoctoral Science Foundation Grant(2019 M651047)the Science and Technology Plans of Tianjin(No.17PTSYJC00040 and18PTSYJC00180)for their financial support。
文摘Lithium-ion(Li-ion) battery and lithium-sulfur(Li-S) battery have attracted significant attention as promising components for large-scale energy storage because of high theoretical capacity of Li,excellent energy density or environmental friendness for two kinds of batteries.However,there still exist some respective obstacles for commercial applications,such as limited theoretical capacity,high cost and low conductivity of Li-ion cells or shuttle effect of lithium polysulfides of Li-S cells.As typical twodimensional materials,layered double hydroxides(LDHs) exhibit excellent potential in the field of energy storage due to facile tunability of composition,structure and morphology as well as convenient composite and strong catalytic properties.Consequently,various LDHs toward novel separators or interlayers,cathodes,anodes,and interesting catalytic templates are researched to resolve these challenges.In this review,the recent progress for LDHs applied in Li-ion batteries and Li-S batteries including the synthesis methods,designs and applications is presented and reviewed.Meanwhile,the existing challenges and future perspectives associated with material designs and practical applications of LDHs for these two classes of cells are discussed.WeWe hope that the review can attract more attention and inspire more profound researches toward the LDH-based electrochemical materials for energy storage.
基金the financial support from the National Nature Science Foundation of China(22078232 and 21938008)the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,we fabricated self-supported ultrathin NiCo layered double hydroxides(LDHs)electrodes as anode for methanol electrooxidation to achieve a high formate production rate(5.89 mmol h^(-1)cm^(-2))coupled with CO_(2)electro-reduction at the cathode.A total formate faradic efficiency of both anode for methanol oxidation and cathode for CO_(2)reduction can reach up to 188%driven by a low cell potential of only 2.06 V at 100 mA cm^(-2)in membrane-electrode assembly(MEA).Physical characterizations demonstrated that Ni^(3+)species,formed on the electrochemical oxidation of Ni-containing hydroxide,acted as catalytically active species for the oxidation of methanol to formate.Furthermore,DFT calculations revealed that ultrathin LDHs were beneficial for the formation of Ni^(3+)in hydroxides and introducing oxygen vacancy in NiCo-LDH could decrease the energy barrier of the rate-determining step for methanol oxidation.This work presents a promising approach for fabricating advanced electrodes towards electrocatalytic reactions.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology (No.2014R1A1A2055740)the Start-up Research Grant(No.SRG2015-00057-FST)
文摘The high performance of an electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of electroactive materials.A porous core-shell architecture in which one-dimensional cobalt oxide(Co_3O_4)nanowire cores are grown on nickel foam prior to the growth of layered double hydroxide(LDH)shells is fabricated.Hydrothermal precipitation and thermal treatment result in homogeneous forests of 70-nm diameter Co_3O_4 nanowire,which are wrapped in LDH-nanosheet-built porous covers through a liquid phase deposition method.Due to the unique core-shell architecture and the synergetic effects of Co_3O_4and NiAl-LDH,the obtained Co_3O_4@LDH electrode exhibits a capacitance of 1 133.3F/g at a current density of 2A/g and 688.8F/g at 20A/g(5.3F/cm^(2 )at 9.4mA/cm^(2 )and 3.2F/cm^(2 )at 94mA/cm^2),which are better than those of the individual Co_3O_4nanowire.Moreover,the electrode shows excellent cycling performance with a retention rate of 90.4%after 3 000cycles at a current density of 20A/g.
基金supported by the National Research Foundation of Korea (NRF-2022R1C1C1004171)supported by the National Science Foundation (Grant number ACI1548562)。
文摘Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of water electrolysis for sustainable hydrogen production.Despite their excellent OER performance,the structural and electronic properties of LDHs,particularly during the OER process,remain to be poorly understood.In this study,a series of LDH catalysts is investigated through in situ X-ray absorption fine structure analyses and density functional theory(DFT) calculations.Our experimental results reveal that the LDH catalyst with equal amounts of Ni and Fe(NF-LDH) exhibits the highest OER activity and catalytic life span when compared with its counterparts having equal amounts of Ni and Co(NC-LDH)and Ni only(Ni-LDH).The NF-LDH shows a markedly enhanced OER kinetics compared to the NC-LDH and the Ni-LDH,as proven by the lower overpotentials of 180,240,and 310 mV,respectively,and the Tafel slopes of 35.1,43.4,and 62.7 mV dec^(-1),respectively.The DFT calculations demonstrate that the lowest overpotential of the NF-LDH is associated with the active sites located at the edge planes of NF-LDH in contrast to those located at the basal planes of Ni-LDH and NC-LDH.The current study pinpoints the active sites on various LDHs and presents strategies for optimizing the OER performance of the LDH catalysts.
基金supported by National Key R&D Program of China(2021YFA1502803)the National Natural Science Foundation of China(NSFC)(21972066 and 91745202)+3 种基金NSFC-Royal Society Joint Program(21661130149)Luming Peng thanks the Royal Society and Newton Fund for a Royal Society-Newton Advanced Fellowshipsupported by the Research Funds for the Frontiers Science Center for Critical Earth Material Cycling,Nanjing Universitya Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Layered double hydroxides(LDHs)have received extensive attention in many fields such as catalysis,environmental management and medical applications.Typically,expensive soluble metal salts are commonly used as the starting materials for the synthesis of LDHs.Here,we report a novel synthesis route for Mg/Al-LDH by using inexpensive basic magnesium carbonate as the starting material.X-ray diffraction(XRD)and solid-state nuclear magnetic resonance(ssNMR)data show that LDHs with rich defects are formed rapidly at room temperature and good crystallinity can be obtained after further hydrothermal treatment.These results provide a simple,rapid and green preparation method for LDHs.
基金sponsored by the National Natural Science Foundation of China(61804054)the Natural Science Foundation of Shanghai(18ZR1410400)+2 种基金the Shanghai Sailing Program(17YF1403300)the Shanghai Aerospace Science and Technology Innovation Fundation(SISP2018)the Shanghai Aerospace Science and Technology Innovation Fund(SAST2019-067)。
文摘Flexible aqueous Ni//Zn batteries have attracted much attention as promising candidates for energy storage in the field of flexible electronics.However,the Ni-based cathodes still face the challenges of poor conductivity,confined charge/mass transfer,and non-flexibility.In this work,we designed a hollow tubular structure consisting of a conductive silver nanowire (Ag NW) wrapped by active Ni Co layered double hydroxide (LDH),for enhancing the electrical conductivity,improving the charge/mass transfer kinetics,and facilitating the ion penetration.By optimizing the contents of Ni,Co and Ag NW,the Ni_(4)Co LDH@Ag_(1.5)NW composite shows a maximum specific capacity of 115.83 m Ah g^(-1)at 0.1 A g^(-1)measured in a two-electrode system.Highlightingly,the flexible aqueous Ni//Zn battery assembled by Ni_(4)Co LDH@Ag_(1.5)NW interwoven with multi-walled carbon nanotube cathode and Zn foil anode realizes a high power density of 160μW cm^(-2)at the energy density of 23.14μWh cm^(-2),which is superior compared with those of oxide/hydroxide based devices and even higher than those of many carbon-based supercapacitors,showing its promising potentials for flexible energy storage applications.
基金supported by the National Natural Science Foundation of China (21476145)
文摘A homogeneous better-dispersed ultrathin nanosheets(ca. 5 nm) of cobalt-nickel layered double hydroxides(LDH) supported on nickel foam scaffold was synthesized using controllable electrodeposition approach for high efficiency electrode materials of new supercapacitor. The morphology and electrochemical performances of the samples can be controlled by adjusting the precursor ratio, i.e., Ni(OAc)2/Co(NO3)2 molar ratio in the electrodeposition approach. With the increase of this molar ratio, the electrochemical performances give a volcano trend. When the optimized molar ratio is 0.64/0.36, the hybrid delivered a high specific capacitance of 1587.5 F g-1 at a current density of 0.5 A g-1, with good rate capability(1155 F g-1 was retained even at 10 A g-1) and a robust recycle stability(remaining 91.5% after 1000 cycles at 5 A g-1). The good performance could be attributed to the enlarged interlayer spacing, ultrathin nanosheets and synergistic effects between Co(OH)2 and Ni(OH)2. Furthermore, an asymmetric supercapacitor with a high energy density of 34.5 Wh kg-1 at 425 W kg-1 and excellent cycling stability of 85.4% after 5000 charge-discharge cycles at 2 A g-1 was fabricated. We believe that this fantabulous new electrode material would have encouraging applications in electrochemical energy storage and a wide readership.