车辆检测是智能交通系统和自动驾驶的重要组成部分。然而,实际交通场景中存在许多不确定因素,导致车辆检测模型的准确率低实时性差。为了解决这个问题,提出了一种快速准确的车辆检测算法——YOLOv8-DEL。使用DGCST(dynamic group convol...车辆检测是智能交通系统和自动驾驶的重要组成部分。然而,实际交通场景中存在许多不确定因素,导致车辆检测模型的准确率低实时性差。为了解决这个问题,提出了一种快速准确的车辆检测算法——YOLOv8-DEL。使用DGCST(dynamic group convolution shuffle transformer)模块代替C2f模块来重构主干网络,以增强特征提取能力并使网络更轻量;添加的P2检测层能使模型更敏锐地定位和检测小目标,同时采用Efficient RepGFPN进行多尺度特征融合,以丰富特征信息并提高模型的特征表达能力;通过结合GroupNorm和共享卷积的优点,设计了一种轻量型共享卷积检测头,在保持精度的前提下,有效减少参数量并提升检测速度。与YOLOv8相比,提出的YOLOv8-DEL在BDD100K数据集和KITTI数据集上,mAP@0.5分别提高了4.8个百分点和1.2个百分点,具有实时检测速度(208.6 FPS和216.4 FPS),在检测精度和速度方面实现了更有利的折中。展开更多
路面病害自动化检测是实现道路智慧化管养的关键技术之一,针对路面病害图像中病害目标占比小、不同类型病害尺度差异大、背景环境复杂等特性,基于YOLOv8架构,提出聚焦形状特征的路面病害检测算法FSF-YOLO(focusing on shape features YO...路面病害自动化检测是实现道路智慧化管养的关键技术之一,针对路面病害图像中病害目标占比小、不同类型病害尺度差异大、背景环境复杂等特性,基于YOLOv8架构,提出聚焦形状特征的路面病害检测算法FSF-YOLO(focusing on shape features YOLO)。构建一种无信息丢失的加强特征提取模块,通过保留多维度空间特征信息,增强骨干网络对低分辨率图像和细小病害目标的特征提取能力;引入可形变注意力特征融合模块,利用病害细长形状特征拓展目标识别区域,提高模型对于长距离病害目标的特征表达能力;运用分组卷积空间金字塔池化模块,强化不同尺寸病害目标特征识别;采用轻量级共享卷积检测头,减少网络参数量和计算量。实验结果表明,提出的方法对不同类别的路面病害目标均获得了较好的效果,在RDD2022数据集上的平均精度达到67.3%,与原算法相比提升了5.3个百分点,整体性能优于其他路面病害检测算法。展开更多
文摘路面病害自动化检测是实现道路智慧化管养的关键技术之一,针对路面病害图像中病害目标占比小、不同类型病害尺度差异大、背景环境复杂等特性,基于YOLOv8架构,提出聚焦形状特征的路面病害检测算法FSF-YOLO(focusing on shape features YOLO)。构建一种无信息丢失的加强特征提取模块,通过保留多维度空间特征信息,增强骨干网络对低分辨率图像和细小病害目标的特征提取能力;引入可形变注意力特征融合模块,利用病害细长形状特征拓展目标识别区域,提高模型对于长距离病害目标的特征表达能力;运用分组卷积空间金字塔池化模块,强化不同尺寸病害目标特征识别;采用轻量级共享卷积检测头,减少网络参数量和计算量。实验结果表明,提出的方法对不同类别的路面病害目标均获得了较好的效果,在RDD2022数据集上的平均精度达到67.3%,与原算法相比提升了5.3个百分点,整体性能优于其他路面病害检测算法。