High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)...High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)O_(15)(CBT)high-temperature piezoelectric ceramics,with high Curie temperature(TC),are the key components for piezoelectric vibration sensors operating at temperatures exceeding 500℃.However,their low piezoelectric coefficient(d_(33))greatly limits their high-temperature applications.In this work,a novel Bi^(3+)self-doping strategy was employed to enhance the piezoelectric performance of CBT ceramics.The enhancement is attributed to an increase in the number of grain boundaries,providing more sites for space charge accumulation and promoting formation of space charge polarization.Furthermore,given that space charge polarization predominantly occurs at low frequencies,dielectric temperature spectra at different frequencies were used to elucidate the mechanism by which space charge polarization enhances piezoelectric properties of CBT ceramics.Excellent overall performance was achieved for the CBT-based high-temperature piezoelectric ceramics.Among them,TC reached 778℃,d_(33) increased by more than 30%,reaching 20.1 pC/N,and the electrical resistivity improved by one order of magnitude(reaching 6.33×10^(6)Ω·cm at 500℃).These advancements provide a key functional material with excellent performance for practical applications of piezoelectric vibration sensors at 500℃and above.展开更多
Piezoelectric ceramics (Na0.5Bi0.5) (0.92)Ba0.08TiO3 +x%MnCO3(BNBT-Mn, x=0CD*21.6, mass fraction) were synthesized by conventional solid state reaction. The results show that when the addition of MnCO3 is 0CD*2 1....Piezoelectric ceramics (Na0.5Bi0.5) (0.92)Ba0.08TiO3 +x%MnCO3(BNBT-Mn, x=0CD*21.6, mass fraction) were synthesized by conventional solid state reaction. The results show that when the addition of MnCO3 is 0CD*2 1.4%, BNBT-Mn ceramics exhibit a single-phase perovskite structure. With the increase of content of MnCO3, piezoelectric constant and electromechanical coupling factor increase rapidly when x is lower than 0.3. Then they both decrease when x is in the range of 0.3 and 1.6. When x=0.3, piezoelectric constant and electromechanical coupling factor reach the maximum value of 160pC/N and 58.5% respectively, which can improve the temperature stability of BNBT-Mn.展开更多
Piezoelectric ceramic based high-temperature acoustic emission(AE)sensor is required urgently in the structural health monitoring of high-temperature fields.In this research,a series of 0.45(BiSc_(x)O_(3)-BiFe_(1-x)O_...Piezoelectric ceramic based high-temperature acoustic emission(AE)sensor is required urgently in the structural health monitoring of high-temperature fields.In this research,a series of 0.45(BiSc_(x)O_(3)-BiFe_(1-x)O_(3))-0.48PbTiO_(3)-0.07BaTiO_(3)(BSc_(x)Fe_(1-x)-PT-BT,n(Sc)/n(Fe)=0.4/0.6-0.6/0.4)ceramics with both high Curie temperature and large piezoelectric constant were presented.The structure and electrical properties of BSc_(x)Fe_(1-x)-PT-BT ceramics as a function of n(Sc)/n(Fe)have been systematically investigated.All the ceramics possess a perovskite structure,and the phase approaches from the rhombohedral toward the tetragonal phase with the decrease of n(Sc)/n(Fe).The BSc_(0.5)Fe_(0.5)-PT-BT and BSc_(0.5)Fe_(0.5)-PT-BT piezoelectric ceramics exhibit good piezoelectricity(d_(33)=250-281 pC/N),high Curie temperature(T_(C)=430-450℃)and excellent temperature stability.These improvements are greatly attributed to the balance between rhombohedral and tetragonal phase near morphotropic phase boundary with dense microstructure of ceramics.AE sensor based BSc_(0.5)Fe_(0.5)-PT-BT piezoelectric ceramic was designed,prepared and tested.The high-temperature stability of AE sensor was characterized through pencil-lead breaking with in situ high-temperature test.The noise of AE sensor is less than 40 dB,and the acoustic signal is up to 90 dB at 200℃.As a result,AE sensors based on BSc_(x)Fe_(1-x)-PT-BT piezoelectric ceramics are expected to be applied into the structural health monitoring of high temperature fields.展开更多
基金National Natural Science Foundation of China (51932010)。
文摘High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)O_(15)(CBT)high-temperature piezoelectric ceramics,with high Curie temperature(TC),are the key components for piezoelectric vibration sensors operating at temperatures exceeding 500℃.However,their low piezoelectric coefficient(d_(33))greatly limits their high-temperature applications.In this work,a novel Bi^(3+)self-doping strategy was employed to enhance the piezoelectric performance of CBT ceramics.The enhancement is attributed to an increase in the number of grain boundaries,providing more sites for space charge accumulation and promoting formation of space charge polarization.Furthermore,given that space charge polarization predominantly occurs at low frequencies,dielectric temperature spectra at different frequencies were used to elucidate the mechanism by which space charge polarization enhances piezoelectric properties of CBT ceramics.Excellent overall performance was achieved for the CBT-based high-temperature piezoelectric ceramics.Among them,TC reached 778℃,d_(33) increased by more than 30%,reaching 20.1 pC/N,and the electrical resistivity improved by one order of magnitude(reaching 6.33×10^(6)Ω·cm at 500℃).These advancements provide a key functional material with excellent performance for practical applications of piezoelectric vibration sensors at 500℃and above.
文摘Piezoelectric ceramics (Na0.5Bi0.5) (0.92)Ba0.08TiO3 +x%MnCO3(BNBT-Mn, x=0CD*21.6, mass fraction) were synthesized by conventional solid state reaction. The results show that when the addition of MnCO3 is 0CD*2 1.4%, BNBT-Mn ceramics exhibit a single-phase perovskite structure. With the increase of content of MnCO3, piezoelectric constant and electromechanical coupling factor increase rapidly when x is lower than 0.3. Then they both decrease when x is in the range of 0.3 and 1.6. When x=0.3, piezoelectric constant and electromechanical coupling factor reach the maximum value of 160pC/N and 58.5% respectively, which can improve the temperature stability of BNBT-Mn.
基金Project(SDBX2020010) supported by Shandong Postdoctoral Innovative Talents Support Plan,ChinaProjects(U1806221,U2006218) supported by the National Natural Science Foundation of China+1 种基金Project(ZR2020KA003)supported by Shandong Provincial Natural Science Foundation,ChinaProjects(2019GXRC017,2020GXRC051)supported by the Project of “20 Items of University” of Jinan,China。
文摘Piezoelectric ceramic based high-temperature acoustic emission(AE)sensor is required urgently in the structural health monitoring of high-temperature fields.In this research,a series of 0.45(BiSc_(x)O_(3)-BiFe_(1-x)O_(3))-0.48PbTiO_(3)-0.07BaTiO_(3)(BSc_(x)Fe_(1-x)-PT-BT,n(Sc)/n(Fe)=0.4/0.6-0.6/0.4)ceramics with both high Curie temperature and large piezoelectric constant were presented.The structure and electrical properties of BSc_(x)Fe_(1-x)-PT-BT ceramics as a function of n(Sc)/n(Fe)have been systematically investigated.All the ceramics possess a perovskite structure,and the phase approaches from the rhombohedral toward the tetragonal phase with the decrease of n(Sc)/n(Fe).The BSc_(0.5)Fe_(0.5)-PT-BT and BSc_(0.5)Fe_(0.5)-PT-BT piezoelectric ceramics exhibit good piezoelectricity(d_(33)=250-281 pC/N),high Curie temperature(T_(C)=430-450℃)and excellent temperature stability.These improvements are greatly attributed to the balance between rhombohedral and tetragonal phase near morphotropic phase boundary with dense microstructure of ceramics.AE sensor based BSc_(0.5)Fe_(0.5)-PT-BT piezoelectric ceramic was designed,prepared and tested.The high-temperature stability of AE sensor was characterized through pencil-lead breaking with in situ high-temperature test.The noise of AE sensor is less than 40 dB,and the acoustic signal is up to 90 dB at 200℃.As a result,AE sensors based on BSc_(x)Fe_(1-x)-PT-BT piezoelectric ceramics are expected to be applied into the structural health monitoring of high temperature fields.